gnuplot 6.1

An Interactive Plotting Program

Thomas Williams & Colin Kelley
Version 6.1 organized by: Ethan A Merritt and many others

Major contributors (alphabetic order):
Christoph Bersch, Hans-Bernhard Broker,
John Campbell, Robert Cunningham,
David Denholm, Gershon Elber,
Roger Fearick, Carsten Grammes,

Lucas Hart, Lars Hecking, Péter Juhasz,
Thomas Koenig, David Kotz, Ed Kubaitis,
Russell Lang, Timothée Lecomte,
Alexander Lehmann, Jérome Lodewyck,
Alexander Mai, Bastian Mirkisch, Tatsuro Matsuoka,
Ethan A Merritt, Petr Mikulik, Hiroki Motoyoshi,
Daniel Sebald, Carsten Steger, Shigeharu Takeno,
Tom Tkacik, Jos Van der Woude,

James R. Van Zandt, Alex Woo, Johannes Zellner
Copyright © 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
Copyright © 2004 - 2025 various authors

Mailing list for comments: gnuplot-info@lists.sourceforge.net
Web site and issue trackers: http://sourceforge.net/projects/gnuplot

This manual was originally prepared by Dick Crawford.

Version 6.1 (development snapshot)

2 gnuplot 6.1

CONTENTS

Contents

I Gnuplot

Copyright

Introduction
Seeking-assistance / Bugs

New features in version 6

Function blocks and scoped variables
Special and complex-valued functions
Newplotstyles.
Hulls, masks, and smoothing
Named palettes L
Newdataformats
New built-in functions and array operations
Program controlflow oL
Multiplots
New terminals and terminal options
Watchpoints
Week-date time support

Othernew features e

Brief summary of features introduced in version 5

Features introducedin5.4
Features introduced in 5.2

Features introduced in5.0

Differences between versions 5 and 6

Deprecated syntaxo

Development branch (version 6.1)
Demos and Online Examples

Batch/Interactive Operation

Command lineoptions

25

25

25

26

34

................ 34

35

36

36

CONTENTS gnuplot 6.1 3

Examples e 36
Canvas size 37
Command-line-editing 37
Comments 38
Coordinates 38
Datastrings 39
Enhanced text mode 39

Escape sequences e e e 41
Environment 41
Expressions 42

Complex values e e e 42

ConStants i e e e e e e 43

Functions L 44

Integer conversion functions (int floor ceilround) L. 47
Ellipticintegrals e 48
Complex Airy functions L. 48
Complex Bessel functions L 48
Expint L e 49
Fresnel integrals FresnelC(x) and FresnelS(x) 49
Gamma e e e e e e e 49
Igamma e 49
Invigamma e e e 50
Ibeta. o e 50
Invibeta e 50
LambertW e e e 50
LnGamma. o e e e e e e e 50
Random number generator Lo 50
Special functions with complex arguments L oL 51
Synchrotron function e e 51

Time functions e e e e 51

4 gnuplot 6.1

CONTENTS

Weekdate_iso oo oo
Weekdate_cdc oo 000000
Uigamma L
Using specifier functions
Column
Columnhead
Stringcolumno

Valid

Fonts

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)
Gd (png, gif, jpeg, sixel terminals)

Postscript (also encapsulated postscript *.eps)

Glossary

Inline data and datablocks

Iteration

61

.............. 61
.............. 61
.............. 62

62

63

63

CONTENTS gnuplot 6.1 5
Linetypes, colors, and styles 64
Colorspec e e 65
Background color L e 66
Linecolor variable e 66

Palette 66

Rgbeolor variable 67

Dashtype e 67
Linestyles vs linetypes e e e 68
Special INEtypes e e e e e e e e 68
Layers 68
Marks 70
Mark data o e e 70
Marks examples e e e e e e e e e 71
Example: custom point shapeso oL 71

Example: scatterplots 72
Example: annotation L. e e 74
Example: windbarbs 75
Example: parametricmarks 77

Mouse input 78
Bind e e 78
Bindspace e 79

Mouse variables e e e 79
Persist 80
Plotting 80
Plugins 81
Scope of variables 81
Start-up (initialization) 82
String constants, string variables, and string functions 82
SUbSIIINGS o o e e e e e e e e e 82
SN OPErators o o e 83

6 gnuplot 6.1 CONTENTS
String functions L L e e e e e e e e 83
Stringencoding L L e e e e e e e e e 83

Substitution and Command line macros 83
Substitution of system commands in backquotes oL Lo 83
Substitution of string variables as macros L. oL o 84
String variables, macros, and command line substitutiono L. 84

Syntax 85
Quote marks e e e e e e e e 85

Time/Date data 86

Watchpoints 87
Watch labels o 88
Watchpoint function target L e 88
Watchmouse e e 89

II Plotting styles 90

Arrows 90
Arrowstyle variable oL 90

Bee swarm plots 91

Boxerrorbars 91

Boxes 91
2D DOXES . . v e e e e e 92
BDBOXES . . . o e e e 92

Boxplot 93

Boxxyerror 95

Candlesticks 95

Circles 96

Contourfill 97

CONTENTS gnuplot 6.1 7

Dots 98
Ellipses 929
Filledcurves 929
Above/belowo e e e 100
3D waterfall plots L e e e e 101
Fill properties e e e e e 101
Financebars 101
Fillsteps 101
Fsteps 102
Histeps 102
Heatmaps 103
Histograms 104
Newhistogram e e e e e e e 106
Automated iteration over multiple columns 107
Histogram color assignments i e e e e e e e e 107
Hsteps 108
Offset e e 109
Missing data e e e e e 110
Image 110
Transparency e e e e e e e e e e e e e e e 111
Image pixels L e e 111
Impulses 111
Labels 112
Lines 113
Linespoints 113

Marks 114

8 gnuplot 6.1 CONTENTS
Linesmarks 115
Masking 115
Parallelaxes 116
Polar plots 116
Points 117

Pointtype symbols 117

Variable point properties e e e e e e e e e e e 118
Polygons 118
Rgbalpha 119
Rgbimage 119
Sectors 119
Spiderplot 120

Newspiderplot o L e e e e e e 121
Steps 122
Surface 122
Vectors 122
Xerrorbars 123
Xyerrorbars 123
Xerrorlines 124
Xyerrorlines 124
Yerrorbars 125
Yerrorlines 125
3D plots 126

Surface plots e e e e e e e 126

CONTENTS gnuplot 6.1 9
2D projection (SEt VIEW MAP) v . vt e e e e e e e e e e e e e e e e e e 126
PM3D plots o o e e e e e e 126

Fence plots 127

Isosurface 127

Zerrorfill 127

Animation 128

IIT Commands 129

Break 129

Cd 129

Call 129
ARGV] . . o e 130
Example o . 130

Clear 131

Continue 131

Do 131

Evaluate 132

Exit 132

Fit 133
Adjustable parameters Ll e e e e e e 135
Short introduction e e e e e e 135
Errorestimates e e e e e 136

Statistical OVEIVIEW e e e e e e 137
Practical guidelines 138
Control e 139
Error recovery L e e 139
Multi-branch e e 139

10 gnuplot 6.1 CONTENTS

Starting values L e e e e e 140
Timedata e e 140
TIPS . o o e e 140
Function blocks 142
Help 144
History 144
If 144
For 145
Import 145
Load 146
Local 146
Lower 147
Pause 147
Pause mouse cloSe e e 148
Pseudo-mousing during pause L e 148
Plot 148
AXES . o e 149
Binaryo e e 149
General e 150

ATTAY . . . o o e e e 150

Record e e 151

SKIP . . o 151

Format e e 151

Blank e e, 151

Endian e e e e 152

Filetype o e 152

AVS e s 152

Edf . . e 152

CONTENTS gnuplot 6.1 11

Keywords o e 152
Scan . . .o 153
Transpose e e e 153
Dx,dy,dz e 153
Flipx, flipy, flipz 153
Origin e e e 153
Center e e e 153
Rotate 154
Perpendicular 154

Data L e 154

Columnheaders 156

Csviiles o o e 156

Every . . . e 156

Example datafile 157

Filters e 158
Bins 158
Convexhull e 158
Concavehull e 159
Delaunay 160
Mask e 160
Sharpen e 160
P 161
ZSOTE o v v o v e e e e e e e e e 161

Index o L e 161

SKIP . o o 162

Smooth L e 162
Acsplines e 163
Bezier 163
Bins e 164
Csplines e 164
Mesplineso e e e 164
Path e 164
Sbezier 164
Unique o e e e e e 164

12 gnuplot 6.1

CONTENTS

Frequency o
Fnormal
Cumulative oo
Cnormal
Kdensity
Special-filenames L
Piped-data
USing oo o
Format
Using_examples
Pseudocolumns L.
Arrays . ..o ..o
Key
Xticlabels oL o
X2ticlabels oL oo
Yticlabels o
Y2ticlabels L oo
Zticlabels Lo
Volatile
Functions
Parametrico
Ranges
Sampling
1D sampling (x ortaxis)
2D sampling (uandvaxes)
For loopsin plot command
Title o
With . ..o
Print
Printerr
Pwd

Quit

178

179

179

179

CONTENTS gnuplot 6.1 13
Raise 179
Refresh 179
Remultiplot 180
Replot 180
Reread 180
Reset 181
Return 181
Save 181
Set-show 182
Angles e e e e 183
ATITOW . . o o o e e e 183
Autoscale . .. L L L e 185
Noextend e e 185
Examples o e 185
Polarmode e e e 186

Bind e e 186
Bmargin e 186
Border e e e 186
Boxwidth e e 188
Boxdepth e e 189
Chi_shapes e e 189
Color e e 189
Colormap e e e 189
Colorsequence o i e e e e e e e e e e e 190
Clabel e e 190
CLP . . o o e 190
Catrlabel e e e e e 191
Cntrparam e e e e 191
Examples e e 193

Color bOX . . . o e e e e e 194

gnuplot 6.1 CONTENTS

Colornames e e e e 194
Contour e e e 195
Cornerpoles L e e e e e 196
Contourfill e 196
Dashtype e e 196
Datafile e 197
Set datafile columnheaders 197
Setdatafile fortran L. 197
Setdatafilenofpe_trap 197
Setdatafile missing 197

Set datafile separator L. 198

Set datafile commentschars Lo 198
Setdatafile binary 199
Decimalsign e e 199
Dgrid3d e e 200
Dummy e 201
Encoding e 202
Errorbars 202
Fit . e 203
Fontpath o e 204
Format 204
Numeric format specifiers 205
Complex format specifiers o 207

Time/date specifiers L e e 207
Examples oL e e 208

Grid e 209
Hidden3d e e e 209
History e 211
Imaginary_i o e e e e 211
Isosamples L e e e 212
Isosurface L 212
ISOtropiC o o e e 212
JICter .« . o e 213
Key e 213

CONTENTS gnuplot 6.1 15

Keyexamples e 215
Extrakeyentries L e 215
Keyautotitle e 215
Keylayout e e 216
Keyplacement e 217
Keyoffset e e 217
Keysamples e 218
Multiple keys o e 218
Label e 218
Examples oL 220
Hypertext o . e e 221
Linetype o . e 221
Link . . . o e e 222
Lmargin e e 222
Loadpath e 222
Locale e 223
Logscale e e 223
MaCros o e e 223
Mapping e e e e e 224
Margin e e e e e 224
Mark . . . e e 225
MICIO . . . o o e 226
MInussign oL e e e e e 226
Monochrome e e e e e 226
Mouse e e 227
Doubleclick e 228
Format 228
Mouseformat e e e 228
Scrolling e 229
ZOOM © v vttt e e e e e 229
MULCS . . . o e e 229
Multiplot L e e 229
MX2UCS . o o o e e e e e e 231
MEXUCS . . o oo o e 231

gnuplot 6.1 CONTENTS

MyY2LICS . . o v e e e e e e e 233
MYLICS . . . o e e e e e 233
MZECS . . . o o o e e e e 233
Nonlinear 233
ODbJect o e e e e 234
Rectangle e 235
Ellipse o e e e 235
Circle o e e 236

Mark . . . e 236
Polygon e 237
Depthorder 237

Offsets o o e e 237
Origin o e 238
OUtpUL e e e 238
Overflow L L e e 239
Float 239

NaN . . e 239
Undefined e 239
Affected operations e e e 240
Palette L 240
Rgbformulae 241
Defined e 242
Functions 243

Gray o o 243
Cubehelix o L e 243
Viridis o e 243
Colormap e 244

File e 244
Gamma COITeCtion L e e e e e e 244
Maxcolorso e e 245
Colormodel e 245
PosStsCript e e e e 245
Parametric L e 246
Paxis 246

CONTENTS gnuplot 6.1 17

Pixmap from colormap 247
Pm3d . .. e 248
With pm3d (pm3d explicit) e 248
Pm3dimplicit e e e e 249
Algorithm e e e 249
Lighting o . e e 250
Position e e 250
Scanorder e e e 251
CHPPING o o e e e e 251
Color_assignment L. e e e e e e e e e 252
Corners2color L. e e e e 252
Border e 252
Fillcolor o e 252
Interpolate e 253
Deprecated_Options e e e e e e 253
PointintervalboX 253
Pointsize e e 253
Polar e 254
Polar grid e 254
Print e 255
Psdir e 256
Raxis . . . o o e 256
Rgbmax 256
Rlabel o e e 256
Rmargin o e 256
Rrange e 256
Rtics . . . e 257
Sampleso e e e 257
SIZe . . o e 257
Spiderplot e e e e e 258
Style . . o e 258
Setstyle arrow L e e e e e e e e e e 259
Boxplot e 260
Setstyledata e e 261

gnuplot 6.1 CONTENTS

Setstyle fillborder 262

Set style fill transparent 262

Setstyle function e 262
Setstyle histogram e e e e e 263
Setstyle inCrement e e e e e e e e e e e 263
Setstyleline e e e e e 263
Setstylecircle e e e e 264
Setstylerectangle e 265
Setstyleellipse e e 265
Setstyle parallelaxis 265
Setstyle spiderplot L e e 266
Setstyletextbox e 266
Setstyle watchpoint L 266
Surfaceo e e 267
Table o e 267
Plotwithtable 268
Terminal e e 268
Termoption e e e e e e e e 269
Theta. o o 269
TICS . o o e e 270
Ticslevel o e 271
Ticscale e e 271
Timestamp e e e e e 271
Timefmt e e 271
Title e e 272
Tmargin e e e 273
Trange 273
THCS . . o o 273
Urange o v o e e e 274
VErsion o e e e 274
Vearid . . . e 274
VIBW . . o e 274
Azimuth L 275
Equal_axes e e 275

Projection 275

CONTENTS gnuplot 6.1 19

VIANEe o o e e e 276
VXIANZE . . . o o e e e e e e e e e e e e e e e 276
VYIange o e e e 276
VZIange o . e e e e e e 276
Walls . . . o 276
Watchpoints o e e e e e e 277
X2data e e 277
X2dHCS . . . e e 277
X2label . . . e 277
X2MUCS . o v v o e e e e e e e e e 277
X2TANZE .« o v e e e e e e e e e e 278
X2UCS © v v o e e e 278
X2ZETOAXIS . . v v v v e e e e e e e e e e e e e e e e e 278
Xdata e e 278

Time o e 278
XACs . . . e 279
Xlabel . . . e 279
XMUCS .« .« v o e e e e e e e 280
XIANZE © « o v v v o e e e e e e e e e e e e e e e e e 280

Examples e e 281

Extend 282

Writeback o 282
XUCS © o v o e e e e e e e 282

XEUCS SETICS + « v v v v e 284

XUcs LISt o e e e e 284

XUCSUME . .« v v v vt e o e e e e e e e e e e e e e e e 285

GeographiC e 286

Xticslogscale e 286

Xtics rangelimited L. L L e 286
Xyplaneo e e 287
XZETOAXIS « « v v v e e e e e e e e e e e e e e e e e 287
Y2data o e 287
Y2dHCS . . . e 287
Y2label e 287

20 gnuplot 6.1 CONTENTS

Y2range o v e e e e e e e e 288
Y2HCS . o o o o e e e e 288
Y2ZErOaxiS . . . v v v e e e e e e e e e e e e e e 288
Ydata e e 288
YAUics e 288
Ylabel e e 288
YMUCS . . . o o o o e e e e 288
Yrangeo 288
YHCS . . o o e 288
YZEroaxis o v o i e e e e e e 289
Zdata ..o e 289
ZAUCS . .. 289
ZZETOAXIS © « v v v e e e e e e e e e e e e 289
Chbdata L e 289
CbAtics o o e e 289
ZRTO . o v vt i e e e e e 289
ZRIOAXIS .+ ¢ v v e v e e e e e e e e e e e e e e e e e 289
Zlabel . ..o 290
ZIMUCS . . v v e e e e e e e e e e 290
Y 1 290
ZUCS © o v o i e e e e e e e 290
Cblabel e 290
Chmtics o o e e e 290
Cbrange e e 291
CbBiCs e e 291
Shell 291
Show 291
Show colornames e e e 291
Show functions L L e e e e e 292
Showmarks oL e e e e 292
Show palette L e e e 292
Show palette gradient e 292

Show palette palette L 292

Show palette rgbformulae 293

CONTENTS gnuplot 6.1 21
Show plot o e e e e 293
Show variables e e e e e e 293

Splot 293
Data-file e e 294

MatrixX o e e e 295
Uniform matriX e e e e e 295

Nonuniform matrix e e 296

Sparse matrixX e e e e e e e e e e e 296

Every . . . e 297

Examples e 297

Example datafile 298
Griddata e 298
Splotsurfaces e e e e e 299
Voxel-grid e e 299

Stats (Statistical Summary) 299
Name e e 302
Test for existence of afile e 302
Voxelgrid e e e 302

System 302

Test 303

Toggle 303

Undefine 303

Unset 304
Linetype o . e e e 304
Monochrome e e e 304
OUPUL o e e e 304
Terminal e 304
Warnings o o o o e e e e e e e e e e e e e 304

Update 305

Vclear 305

22 gnuplot 6.1 CONTENTS

Vhill
Warn

While

IV Terminal types

Complete list of terminals

Command-line_options e
Monochrome_Options e e e e e e
COIOT_TESOUICES . .« v v v v e it e e e e e e e e e e e e e e
Grayscale_resourcesot e e e e e e

LiNe reSOUICES v v v v o o o e e e e e e e e e

Caca limitationsand bugs

CairolateX e

Cgmfont e e e e e
Cgmfontsize e e e
Cgmlinewidth o
Cgmrotate o e e e e e e e e e e e e
Cgmsolid o e
CgMSIZE . . . o o e e e e e e e e e
Cgmwidtho e
Cgmnofontlist e e e e

CONEXE e e e e

Requirements L e

Calling gnuplot from ConTeXt e

305

306

306

307

CONTENTS gnuplot 6.1 23

ANImate e 322
Dumb 322
DX e 323
Emf . e 323
Epscairo e e 324
Epslatex e e e 324
Epson_180dpi e e e 327
Fig o e 327
Gif . e 328

ANImate L. e e e e 329

Optimize e e 329

Fonts o 329
GDIC . . o o e e 330
GIrasS. . . v v o i e 330
HP terminals e 331
Hpgl . . . e e 331
Imagen e 331
Ipeg . e e e 331
Kittycairo o e e e e 332
Kittygd e e 333
LatexX o o e e 333
Linuxconsole e 333
Lua . . 334

Luatikz o o 334
Pbm . . e e 336
PClS e e 337
Pdfcairo e 338
Pict2e . . . o e 339
Pm . e e 340
Pg e 340

Examples L e 341
Pngcairo e 341
Postscript e e 342

Editing postscript e e e e 344

Postscript fontfile 345

24 gnuplot 6.1 CONTENTS
Postscript prologue 346
Postscript adobeglyphnames oL o 346

Pslatex and pstex e e 347
Pstricks 348
L 349
Regis . . . o o e 351
Sixelgd L e 351
SV . e 352
SVEA . L e e e 352
Tek40 . . . 353
Tek410X o o e 353
Texdraw L e 353
Taif . e e 354
TiKZ . . e e 355
Tkeanvas e e e 355
Webp . . 357
WiIndows L e e e 357
Graph-menu. 359
Printing L e e 359
TeXt-Menu e 360
Weanuplot.mnu L. e e e e e e 360
Weanuplotini L e e e e e 361
WXE e 361
D 363
XI1_fonts o o e e s 364
Command-line_options L e 365
COlOr_TESOUICES . .« v v v v v e e e e e e e e e e e e e 366
Grayscale_TEeSOUICES v v v i i e e i et e e e e e e e e e e 367
Line resources oo . e e e e 367
X111 pm3d_reSOUrces v v v v i o e e e e e e e e e e e e e e e e e e 368
X11 Other_resources oo v vt i i it e e e e e e 368
XIb .o e 369

V Index 369

gnuplot 6.1 25

Part 1

Gnuplot

Copyright

Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley
Copyright (C) 2004-2024 wvarious authors

Permission to use, copy, and distribute this software and its documentation for any purpose with or without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source
code. Modifications are to be distributed as patches to the released version. Permission to distribute binaries
produced by compiling modified sources is granted, provided you

1. distribute the corresponding source modifications from the

released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version

in addition to the base release version number,
3. provide your name and address as the primary contact for the

support of your modified version, and
4. retain our contact information in regard to use of the base software.

Permission to distribute the released version of the source code along with corresponding source modifications
in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by applicable
law.

AUTHORS
Original Software:
Thomas Williams, Colin Kelley.
Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.
Gnuplot 3.0 additions:
Gershon Elber and many others.
Gnuplot 4.0 and subsequent releases:
See list of contributors at head of this document.
Introduction

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, macOS, and many
other platforms. The source code is copyrighted but freely distributed (i.e., you don’t have to pay for it). It was
originally created to allow scientists and students to visualize mathematical functions and data interactively, but
has grown to support many non-interactive uses such as web scripting. It is also used as a plotting engine by
third-party applications like Octave. Gnuplot has been supported and under active development since 1986.

Gnuplot can generate many types of plot in 2D and 3D. It can draw using lines, points, boxes, contours, vector
fields, images, surfaces, and associated text. It also supports specialized graphs such as heat maps, spider plots,
polar projection, histograms, boxplots, bee swarm plots, and nonlinear coordinates.

Gnuplot supports many different types of output: interactive screen terminals (with mouse and hotkey input),
direct output to pen plotters or modern printers, and output to many file formats (eps, emf, fig, jpeg, LaTeX,

26 gnuplot 6.1

pdf, png, postscript, ...). Gnuplot is easily extensible to include new output modes. A recent example is support
for webp animation. Mouseable plots embedded in web pages can be generated using the svg or HTMLS canvas
terminal drivers.

The command language of gnuplot is case sensitive, i.e. commands and function names written in lowercase
are not the same as those written in capitals. All command names may be abbreviated as long as the abbreviation
is not ambiguous. Any number of commands may appear on a line, separated by semicolons (;). Strings may
be set off by either single or double quotes, although there are some subtle differences. See syntax (p. 85) and
quotes (p. 85) for more details. Example:

set title "My First Plot"; plot 'data'; print "all done!"

Commands may extend over several input lines by ending each line but the last with a backslash (\). The
backslash must be the last character on each line. The effect is as if the backslash and newline were not there.
That is, no white space is implied, nor is a comment terminated. Therefore, commenting out a continued line
comments out the entire command (see comments (p. 38)). But note that if an error occurs somewhere on a
multi-line command, the parser may not be able to locate precisely where the error is and in that case will not
necessarily point to the correct line.

In this document, curly braces ({ }) denote optional arguments and a vertical bar (|) separates mutually exclusive
choices. Gnuplot keywords or help topics are indicated by backquotes or boldface (where available). Angle
brackets (<>) are used to mark replaceable tokens. In many cases, a default value of the token will be taken
for optional arguments if the token is omitted, but these cases are not always denoted with braces around the
angle brackets.

For built-in help on any topic, type help followed by the name of the topic or help ? to get a menu of available
topics.

A large set of demo plots is available on the web page http://www.gnuplot.info/demo/

When run from command line, gnuplot is invoked using the syntax

gnuplot {OPTIONS} filel file2 ...

where filel, file2, etc. are input files as in the load command. Options interpreted by gnuplot may come
anywhere on the line. Files are executed in the order specified, as are commands supplied by the -e option, for
example

gnuplot filel.in -e "reset" file2.in

The special filename "-" is used to force reading from stdin. Gnuplot exits after the last file is processed. If
no load files are named, Gnuplot takes interactive input from stdin. See help batch/interactive (p. 36) for
more details. See command-line-options (p. 36) for more details, or type

gnuplot —--help

In sessions with an interactive plot window you can hit ’h” anywhere on the plot for help about hotkeys (p. 78)
and mousing (p. 227) features.

Seeking-assistance / Bugs

The canonical gnuplot home page can be found at http://www.gnuplot.info

Before seeking help, please check file FAQ.pdf or the above website for a FAQ (Frequently Asked
Questions) list.

Another resource for help with specific plotting problems (not bugs) is

http://www.gnuplot.info/demo/
http://www.gnuplot.info
http://www.gnuplot.info/faq/
http://www.gnuplot.info/faq/

gnuplot 6.1 27

https://stackoverflow.com/questions/tagged/gnuplot

Bug reports and feature requests should be uploaded to the trackers at

https://sourceforge.net/p/gnuplot/_list/tickets

Please check previous reports to see if the bug you want to report has already been fixed in a newer version.

When reporting a bug or posting a question, please include full details of the gnuplot version, the terminal type,
and the operating system. A short self-contained script demonstrating the problem is very helpful.

Instructions for subscribing to gnuplot mailing lists may be found via the gnuplot development website
http://sourceforge.net/projects/gnuplot

Please note that before you write to any of the gnuplot mailing lists you must first subscribe to the list. This
helps reduce the amount of spam.

The address for mailing to list members is:

gnuplot—-info@lists.sourceforge.net

A mailing list for those interested in the development version of gnuplot is:

gnuplot-betallists.sourceforge.net

New features in version 6

Version 6 is the latest major release in a history of gnuplot development dating back to 1986. It follows major
version 5 (2015) and subsequent minor version releases 5.2 (2017) and 5.4 (2020). Development continues in
a separate unreleased branch in the project git repository on SourceForge.

Some features described in this document are present only if chosen and configured at the time gnuplot is
compiled from source. To determine what configuration options were used to build the particular copy of
gnuplot you are running, type show version long.

Function blocks and scoped variables

This version of gnuplot introduces a mechanism for invoking a block of standard gnuplot commands as a
callable function. A function block can accept from 0 to 9 parameters and returns a value. Function blocks can
be used to calculate and assign a new value to a variable, to combine with other functions and operators, or to
perform a repetitive task preparing data. There are three components to this mechanism. See local (p. 146),
scope (p. 81), function blocks (p. 142), return (p. 181).

* The local qualifier allows optional declaration of a variable or array whose scope is limited to the duration
of execution of the program unit in which it is found. These units currently include execution of a load
or call statement, function block evaluation, and the code block in curly brackets following an if, else,
do for, or while statement. If the name of a local variable duplicates the name of a global variable, the
global variable is shadowed until exit from the local scope.

* The function command declares a named function block (effectively an array of strings) containing
gnuplot commands. When the function block is invoked, commands are executed successively until the
end of the block or until a return command is encountered.

http://sourceforge.net/projects/gnuplot

28 gnuplot 6.1

* The return <expression> command terminates execution of a function block. The result of evaluating
<expression> is returned as the value of the function. Anywhere outside a function block return acts
like exit.

Please see function_block.dem for an example of using this mechanism to define and plot a non-trivial function
that is too complicated for a simple one-line definition f(x) =

Special and complex-valued functions

Gnuplot 6 provides an expanded set of complex-valued functions and updated versions of some functions that
were present in earlier versions.

* New: Riemann zeta function with complex domain and range. See zeta (p. 55).

* Updated lower incomplete gamma function with improved domain and precision. Complex arguments
accepted. See igamma (p. 49).

» New upper incomplete gamma function (real arguments only). See uigamma (p. 53).

» Updated incomplete beta function with improved domain and precision. See ibeta (p. 50).
» New function for the inverse incomplete gamma function. See invigamma (p. 50).

» New function for the inverse incomplete beta function. See invibeta (p. 50).

* New complex function LambertW(z.k) returns the kth branch of multivalued function W_k(z). Note
that the older function lambertw(x) = real(LambertW(real(z), 0)). See LambertW (p. 50).

* New complex function InGamma(z). Note that existing function lgamma(x) = real(InGamma(real(z)).
See InGamma (p. 50).

* Complex function conj(z) returns the complex conjugate of z.
* Synchrotron function F(x), see SynchrotronF (p. 51).

* acosh(z) domain extended to cover negative real axis.

* asin(z) asinh(z) improved precision for complex arguments.

* Predefined variable I = sqrt(-1) = {0,1} for convenience. This is useful because gnuplot does not accept
{a,b} as a valid complex constant but does accept (a + b*I) as a valid complex expression.

Additional special functions are supported if a suitable external library is found at build time. See special_func-
tions (p. 51).

* Complex Bessel functions Iv(z), Jv(z), Kv(z), Yv(z) of order v (real) with complex argument z. See
BesselK (p. 48).

* Complex Hankel functions H1v(z), H2v(z) of order v with complex z. See BesselH1 (p. 49).
* Complex Airy functions Ai(z), Bi(z).

* Complex exponential integral of order n. See expint (p. 49).

* Fresnel integrals C(x) and S(x). See FresnelC (p. 49).

* Function VP_fwhm(sigma,gamma) returns the full width at half maximum of the Voigt profile. See
VP (p. 45), VP_fwhm (p. 45).

gnuplot 6.1 29

New plot styles

* The plot style with surface works in 2D polar coordinates to produce a solid-fill gridded representation
of the plane, colored by weighted contributions from an arbitrary set of input points. This is analogous
to the use of dgrid3d and style with pm3d to produce a 3D gridded surface. See set polar grid (p. 254)
and polar heatmap (p. 117).

» New 2D plot style with sectors is an alternative to generating a full polar gridded surface. For each
input data point it generates a single annular wedge in a conceptual polar grid. Unlike polar mode with
surface it can be used in either a polar or cartesian coordinate graph.

* New 2D plot style with hsteps allows construction of step-like plots with a variety of representations in
addition to those offered by existing styles steps, histeps, fsteps, and fillsteps. See hsteps (p. 108).

* Plot style with lines now has a filter option sharpen. This filter detects spikes in a function plot that
appear truncated in the output because the peak lies between two x-coordinates at which the function
has been sampled. It adds a new sample point at the location of each such peak. See filters (p. 158).

* Although it is not strictly speaking a new plot style, the combination of the concave hull filter with along-
path smoothing of filled areas allows creation of ’blobby region’ plots showing, for example, the extents
of overlapping data clusters. See concavehull (p. 159).

* 3D plot style with pm3d accepts an optional modifier zclip [zmin:zmax] that selects only a slice of the
full surface. Successive plots with incremental changes to the clipping limits can be used to animate a
cross-sectional cutaway view in 3D or to create a filled area contour map. This is automated by a new
plot style with contourfill, that is particularly useful in 2D projection. See set contourfill (p. 196).

Hulls, masks, and smoothing

* A cluster of 2D points can be replaced by its bounding polygon using the new filter convexhull. A
path-smoothed bounding curve can be plotted as a filled area using " convexhull smooth path with filled-
curves". See convexhull (p. 158).

* An alternative experimental filter concavehull generates a bounding polygon that is not necessarily con-
vex; instead it forms a y-shape determined by a characteristic length parameter that controls the degree
of concavity. This essentially draws a blob around the data points. See concavehull (p. 159).

* A convex hull or other polygon can be used as a mask to display only selected portions of a pm3d surface
or an image plot. See new plot style with mask (p. 115) (defines a mask) and keyword mask (applies
the mask to a subsequent plot component).

* curve smoothing using along-path cubic splines suitable for closed curves or for 2D curves that are not
monotonic on X. See smooth path (p. 164). This allows smoothing of hulls and masks.

* cubic spline smoothing of 3D lines. See splot smooth csplines (p. 164)
 Smoothing options apply to plotting with filledcurves (p. 99) {above|below|between}.
* New keyword period for smoothing periodic data. See smooth kdensity (p. 165).

Named palettes

* The current palette can be saved to a named colormap for future use. See set colormap (p. 189).

30 gnuplot 6.1

* pm3d and image plots can specify a previously saved palette by name. This permits the use of multiple
palettes in a single plot command. See colorspec palette (p. 66).

* Named palette colormaps can be manipulated as arrays of 32-bit ARGB color values. This permits
addition of alpha-channel values or other modifications not easily specified in a set palette command.

* There is a new predefined color scheme set palette viridis.

* Palettes read from a file or datablock (set palette file) may be specified either using fractional color
components or 24-bit packed RGB values.

New data formats

* The sparse matrix=(cols,rows) option to plot and splot generates a uniform pixel grid into which
individual pixel values may be loaded in any order. This is useful for plotting heat maps from incomplete
data. See sparse (p. 296).

* During input of non-uniform matrix data, column(0) now returns the linear ordering of matrix elements.
Le. for element A[i,j] in an MxN matrix A, column(0)/M gives the row index i, and column(0)%M gives
the column index j.

New built-in functions and array operations

* palette(z) returns the current RGB palette color mapping z into cbrange.
* rgbcolor("name") returns the 32bit ARGB value for a named color.

* index(Array, element) returns the first index i for which Array[i] is equal to element. See arrays
(p. 59).
¢ User-defined functions allow an array as a parameter. Example: dot(A,B) = sum [i=1:|A|] A[i]*B[i]

* Array slices are generated by appending a range to the array name. Array[n] is single element.
Array[n:n+5] is a six element slice of the original array. See arrays (p. 59), slice (p. 60).

* split("string", "separator") unpacks the fields in a string into an array of strings. See split (p. 54).

 join(array, "separator") is the complement to split. It concatenates the elements of a string array into
a single string with field separators. See join (p. 55).

* stats <non-existent file> yields a testable value. See stats test (p. 302).

* stats $vgrid finds min/max/mean/stddev of voxels in grid

Program control flow

* New syntax if ... else if ... else ...

* XDG base directory conventions for configuration preferences are supported. The program reads
initial commands from $XDG_CONFIG_HOME/gnuplot/gnuplotrc. Session command history is
saved to $XDG_STATE_HOME/gnuplot_history. If these files are not found, SHOME/.gnuplot and
$HOME/.gnuplot_history are used as in previous gnuplot versions.

* unset warnings suppresses output of warning messages to stderr.

* warn "message" prints filename, line number and message to stderr.

gnuplot 6.1 31

» Exception handling for the "fit" command. Control always returns to the next line of input, even in the
case of fit errors. On return, FIT_ERROR is non-zero if an error occurred. This allows scripted recovery
from a bad fit. See fit error_recovery (p. 139).

Multiplots

Commands executed during creation of a multiplot are now stored in a datablock
$GPVAL_LAST_MULTIPLOT. They can be replayed by the new command remultiplot. Certain
saved commands that would be problematic during replay are not reexecuted. Note that the regenerated
multiplot may not exactly match the original if graphics settings (axis ranges, logscale, etc) have changed in
the interim.

The following sequence of commands will save both the original graphics state and the multiplot commands to
a script file that can be reloaded later.

save "my_multiplot.gp"

set multiplot

. various commands to generate the component plots ...

unset multiplot

set print "my_multiplot.gp" append

print $GPVAL_LAST_MULTIPLOT

unset print

* The replot command will check to see if the most recent plot command was part of a completed multi-
plot. If so, it will execute remultiplot instead of reexecuting that single plot command.

* Mousing operations while a multiplot is displayed will also automatically treat a replot/refresh request as
remultiplot. However the mouse coordinate readout and thus zoom/pan operations are still based solely
on the axis settings for the final component plot, as was the case in earlier gnuplot versions. Because the
commands stored in $GPVAL_LAST_MULTIPLOT may not be sufficient to recreate the appropriate
graphics settings for each component plot, mousing in a multiplot may not act as you would like. This
may be improved in the future.

New terminals and terminal options

» New terminals kittygd and kittycairo provide in-window graphics for terminal emulators that support
the kitty protocol. Kitty is an alternative to sixel graphics that offers full 24-bit RGB color. See kittycairo
(p. 332).

* New terminal block for text-mode pseudo-graphics uses Unicode block or Braille characters to offer
improved resolution compared to the dumb or caca terminals.

* New terminal webp generates a single frame or an animation sequence using webp encoding. Frames
are generated using pngcairo, then encoded through the WebPAnimEncoder API exported by libwebp
and libwebpmux.

* Terminals that use the same window for text entry and graphical display, including dumb, sixel, Kitty,
and block, now respond to keyboard input during a pause mouse command. While paused, they interpret
keystrokes in the same way that a mousing terminal would. See pseudo-mousing (p. 148). For example
the left/right/up/down arrow keys change the view angle of 3D plots and perform incremental pan/zoom
steps for 2D plots.

32

gnuplot 6.1

Watchpoints

Watchpoints are target values associated with individual plots in a graph. As that plot is drawn, each component
line segment is monitored to see if its endpoints bracket the target value of a watchpoint coordinate (X, y, or
z) or function f(x,y). If a match is found, the [X,y] coordinates of the match point are saved for later use. See
watchpoints (p. 87). Possible uses include

Find the intersection points of two curves

Find zeros of a function

Find and notate where a dependent variable (y or z) or function f(x,y) crosses a threshold value
Use the mouse to track values along multiple plots simultaneously

Control placement of labels on contour lines

Week-date time support

The Covid-19 pandemic of 2020/2021 generated increased interest in plotting epidemiological data, which is
often tabulated using a "week date" reporting convention. Deficiencies with gnuplot support for this convention
were remedied and the support for week-date time was extended.

Time specifier format %W has been brought into accord with the ISO 8601 week date standard.
Time specifier format %U has been brought into accord with the CDC/MMWR week date standard.
New function tm_week(time, std) returns ISO or CDC standard week of year.

New function weekdate_iso(year, week, day) converts ISO standard week date to calendar time.

New function weekdate_cdc(year, week, day) converts CDC standard week date to calendar time.

Other new features

For features added since version 6.0, see development (p. 35).

Time units for setting major and minor tics. Both major and minor tics along a time axis now accept
tic intervals given in units of minutes/hours/days/weeks/months/years. See set xtics (p. 282), set mxtics
time (p. 232).

The character sequence $# in a using specifier evaluates to the total number of columns available in the
current line of data. For example "plot FOO using 0:(column($# - 1))" plots the last-but-one field of
each row.

keyword binvalue=avg plots the average, rather than the sum, of binned data.

set colorbox bottom places a horizontal color box underneath the plot rather than a vertical box on the
right.

Improved rendering of intersecting pm3d surfaces - overlapping surface tiles are split into two pieces
along the line of intersection so that tiles from one surface do not incorrectly protrude though the other
surface.

User-controlled spotlight added to the pm3d lighting model. See set pm3d spotlight (p. 250).

New options to force total key width and number of columns. See key layout (p. 216).

gnuplot 6.1 33

set pm3d border retrace draws a border around each pm3d quadrangle in the same color as the filled
area. In principle this should have no visible effect, but it prevents some display modes like glitchy pdf
or postscript viewers from introducing aliasing artifacts.

set isotropic adjusts the axis scaling in both 2D and 3D plots such that the x, y, and z axes all have the
same scale.

Change: Text rotation angle is not limited to integral degrees.
Special (non-numerical) linetypes 1t nodraw, It black, 1t background See special_linetypes (p. 68).
Data-driven color assignments in histogram plots. See histograms colors (p. 107).

The position of the key box can be manually tweaked by specifying an offset to be added to whatever
position the program would otherwise use. See set key offset (p. 217).

plot .. if (<expression>) New filter for plot and splot commands to select only those input lines that
match a target expression. See filters if (p. 161).

Brief summary of features introduced in version 5

Features introduced in 5.4

Expressions and functions use 64-bit integer arithmetic. See integer (p. 47)
2D plot styles polygons (p. 118), spiderplot (p. 120), arrows (p. 90)

3D plot styles boxes (p. 91), circles (p. 96), polygons (p. 118), isosurface (p. 127) and other represen-
tations of gridded voxel data

Data preprocessing filter zsort (p. 161)
Construction of customized keys using keyentry (p. 215)

New LaTeX terminal pict2e supersedes older terminals latex (p. 333), emtex (p. 333), eepic (p. 333),
and tpic (p. 333). The older terminals are no longer built by default

set pixmap imports a png/jpeg/gif image as a pixmap that can be scaled and positioned anywhere in a
plot or on the page

Enhanced text mode accepts \ U+xxxx (xxxx is a 4 or 5 character hexadecimal) as representing a Unicode
code point that is converted to the corresponding UTF-8 byte sequence on output

Revised syntax for with parallelaxes allows convenient iteration inside the plot command, similar to
plot styles histogram and spiderplot

Features introduced in 5.2

Nonlinear coordinate systems (see set nonlinear (p. 233))

Automated binning of data (see bins (p. 158))

2D beeswarm plots. See set jitter (p. 213)

3D plot style zerrorfill (p. 127)

3D lighting model provides shading and specular highlighted (see lighting (p. 250)).

Array data type, associated commands and operators. See arrays (p. 59).

34 gnuplot 6.1

* New terminals sixelgd, domterm

» New format descriptors tH tM tS handle relative times (interval lengths). See time_specifiers (p. 207).

Features introduced in 5.0

* Terminal independent dash types.

 The default sequence of colors used for successive elements in a plot is more easily distinguished by users
with color-vision defects.

* New plot types with parallelaxes, with table.
* Hypertext labels activated by a mouse-over event.
» Explicit sampling ranges in 2D and 3D function plots and pseudofiles '+ and "++'.

* Plugin support through new command import that attaches a user-defined function name to a function
provided by an external shared object.

Differences between versions 5 and 6

Some changes introduced in version 5 could cause certain scripts written for earlier versions of gnuplot to fail
or to behave differently. There are very few such changes in version 6.

Deprecated syntax

Deprecated in version 5.4, removed in 6.0
use of a file containing "reread’ to perform iteration

N = 0; load "file-containing-reread";
file content:

N = N+1

plot func (N, x)

pause -1

if (N<5) reread

Current equivalent
do for [N=1:5] {
plot func (N, x)
pause -1

}

Deprecated in version 5.4, removed in 6.0
set dgrid3d ,, foo # no keyword to indicate meaning of foo

Current equivalent
set dgrid3d gnorm foo # (example only; gnorm is not the only option)

Deprecated in version 5.0, removed in 6.0
set style increment user

Current equivalent
use "set linetype" to redefine a convenient range of linetypes
explicit use of "linestyle N" or "linestyle variable"

Deprecated in version 5.0, removed in 6.0
show palette fit2rgbformulae

gnuplot 6.1 35

Development branch (version 6.1)

Version 6.0 is the most recent gnuplot stable release. Development of new features and potentially disruptive
code revision is carried out in a separate branch that self-identifies as version 6.1. Since the development branch
code may change at any time, you should also check the "last modified" date reported on startup or by gnuplot
—version.

Here is a partial list of features under development that have not yet appeared in a stable release. Items near
the top of the list may be back-ported to an incremental update of the stable version (6.0.x). Items near the
bottom of the list may not appear in a stable release before version 6.2.

* New 2D plot style with hsteps allows construction of step-like plots with a variety of representations in
addition to those offered by existing styles steps, histeps, fsteps, and fillsteps. See hsteps (p. 108). (in
6.0.2)

* Blank line equivalent for binary data files, needed to support binary input for plot styles that expect a
blank line to separate data items. See binary blank (p. 151). (in 6.0.2)

* In previous gnuplot versions all 3D polygons, objects, and filled areas shared a single border color and
linewidth taken from "set pm3d". This limitation is now removed; border properties can be specified
per-plot or per-object. This change affects any scripts that expected "set pm3d" to affect the borders of
3D polygons and boxes. (in 6.0.3)

* splot with contourfill at base (in 6.0.3)
* Revised implementation of local variables (faster, more well-defined scope). (in 6.0.2)

* Input data to plot and splot can be filtered through a conditional expression outside the "using" section.
For example: plot DATA using 2:3 with boxes if (stringcolumn(1) eq "ABC") (in 6.0.3)

» New command save changes is equivalent to the old contributed external script gpsavediff. This com-
mand saves only the program settings, variables, and functions that distinguish the current state from the
program state at the start of the current gnuplot session. See save changes (p. 181). (in 6.0.3)

* Revised wxt terminal driver with more robust threading and error recovery. (in 6.0.3)

* "linestyle variable"

» pm3d coloring for 3D polygons (e.g. Delaunay tessellation of surfaces). See delaunay (p. 160).

* Alternatives to gdlib for handling image files as data

* Iteration over array contents array A; for [e in A] { ... } [EXPERIMENTAL]

* Deprecation of the "sample" keyword

» New numerical operation "prod" (cumulative product). See product (p. 57). Example: N! == prod
[i=1:N]1i

* New category of graphical objects called "marks" that allow definition of complex symbols used in plots.
See marks (p. 70).

* See escape sequences (p. 41). Unicode escape sequences are accepted in both "enhanced" and "noen-
hanced" text. Unicode escape sequences are expanded during substring evaluation. Octal escape se-
quences are required to contain exactly three digits.

* New gprintf format specifiers %C and %Ci to output complex values. See gprintf complex (p. 207)
and imaginary_i (p. 211). [EXPERIMENTAL]

* Document that the program offers predefined variables I, Inf, and NaN

36 gnuplot 6.1

Demos and Online Examples

The gnuplot distribution contains a collection of examples in the demo directory. You can
browse on-line versions of these examples produced by the png, svg, and canvas terminals at
http://gnuplot.info/demos

The commands that produced each demo plot are shown next to the plot, and the corresponding gnuplot script
can be downloaded to serve as a model for generating similar plots.

Batch/Interactive Operation

Gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together.

Command-line arguments are assumed to be either program options or names of files containing gnuplot
commands. Each file or command string will be executed in the order specified. The special filename "-" is
indicates that commands are to be read from stdin. Gnuplot exits after the last file is processed. If no load
files and no command strings are specified, gnuplot accepts interactive input from stdin.

Command line options

Gnuplot accepts the following options on the command line

-V, —--version

-h, —-help

-p, ——persist

-d, —--default-settings

-s, ——slow

-e "commandl; command2; ..."

—-c scriptfile ARGl ARG2

-p tells the program not to close any remaining interactive plot windows when the program exits.
-d tells the program not to execute any private or system initialization (see initialization (p. 82)).

-s tells the program to wait for slow font initialization on startup. Otherwise it prints an error and continues
with bad font metrics.

-e "command" tells gnuplot to execute that single command before continuing.

-c is equivalent to -e "call scriptfile ARG1 ARG2 ...". See call (p. 129).

Examples

To launch an interactive session:

gnuplot

To execute two command files "inputl" and "input2" in batch mode:
gnuplot inputl input2

To launch an interactive session after an initialization file "header" and followed by another command file
"trailer":

gnuplot header - trailer

http://gnuplot.info/demos/

gnuplot 6.1 37

To give gnuplot commands directly in the command line, using the "-persist" option so that the plot remains
on the screen afterwards:

gnuplot -persist -e "set title 'Sine curve'; plot sin(x)"

To set user-defined variables a and s prior to executing commands from a file:

gnuplot -e "a=2; s='file.png'" input.gpl

Canvas size

This documentation uses the term "canvas" to mean the full drawing area available for positioning the plot and
associated elements like labels, titles, key, etc. NB: For information about the HTMLS5 canvas terminal see set
term canvas (p. 315).

set term <terminal_type> size <XX>, <YY> controls the size of the output file, or "canvas". By default,
the plot will fill this canvas.

set size <XX>, <YY> scales the plot itself relative to the size of the canvas. Scale values less than 1 will
cause the plot to not fill the entire canvas. Scale values larger than 1 will cause only a portion of the plot to fit
on the canvas. Please be aware that setting scale values larger than 1 may cause problems.

Example:

set size 0.5, 0.5

set term png size 600, 400
set output "figure.png"
plot "data" with lines

These commands produce an output file "figure.png" that is 600 pixels wide and 400 pixels tall. The plot will
fill the lower left quarter of this canvas.

Note: In early versions of gnuplot some terminal types used set size to control the size of the output canvas.
This was deprecated in version 4.

Command-line-editing

Command-line editing and command history are supported using either an external gnu readline library, an
external BSD libedit library, or a built-in equivalent. This choice is a configuration option at the time gnuplot
is built.

The editing commands of the built-in version are given below. Please note that the action of the DEL key is
system-dependent. The gnu readline and BSD libedit libraries have their own documentation.

38 gnuplot 6.1

Command-line Editing Commands

Character Function
Line Editing
"B move back a single character.
F move forward a single character.
~A move to the beginning of the line.
~E move to the end of the line.
~H delete the previous character.
DEL delete the current character.
~D delete current character. EOF if line is empty.
K delete from current position to the end of line.
L redraw line in case it gets trashed.
~U delete the entire line.
W delete previous word.
"V inhibits the interpretation of the following key as editing command.
TAB performs filename-completion.
History
P move back through history.
N move forward through history.
"R starts a backward-search.

Comments

The comment character # may appear almost anywhere in a command line, and gnuplot will ignore the rest of
that line. A # does not have this effect inside a quoted string. Note that if a commented line ends in *\” then
the subsequent line is also treated as part of the comment.

See also set datafile commentschars (p. 198) for specifying a comment character for data files.

Coordinates

The commands set arrow, set key, set label and set object allow you to draw something at an arbitrary position
on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {, {<system>} <z>}

Each <system> can either be first, second, polar, graph, screen, or character.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second places it in the
system defined by the x2,y2 axes (top and right); graph specifies the area within the axes — 0,0 is bottom left
and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z to get to the base — see set
xyplane (p. 287)); screen specifies the screen area (the entire area — not just the portion selected by set size),
with 0,0 at bottom left and 1,1 at top right. character coordinates are used primarily for offsets, not absolute
positions. The character vertical and horizontal size depend on the current font.

polar causes the first two values to be interpreted as angle theta and radius r rather than as x and y. This could
be used, for example, to place labels on a 2D plot in polar coordinates or a 3D plot in cylindrical coordinates.

If the coordinate system for x is not specified, first is used. If the system for y is not specified, the one used
for x is adopted.

gnuplot 6.1 39

In some cases, the given coordinate is not an absolute position but a relative value (e.g., the second position
in set arrow ... rto). In most cases, the given value serves as difference to the first position. If the given

coordinate belongs to a log-scaled axis, a relative value is interpreted as multiplier. For example,
set logscale x
set arrow 100,5 rto 10,2

plots an arrow from position 100,5 to position 1000,7 since the x axis is logarithmic while the y axis is linear.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string according
to the timefmt format string. See set xdata (p. 278) and set timefmt (p. 271). Gnuplot will also accept an
integer expression, which will be interpreted as seconds relative to 1 January 1970.

Datastrings

Data files may contain string data consisting of either an arbitrary string of printable characters containing no
whitespace or an arbitrary string of characters, possibly including whitespace, delimited by double quotes. The

following line from a datafile is interpreted to contain four columns, with a text field in column 3:
1.000 2.000 "Third column is all of this text" 4.00

Text fields can be positioned within a 2-D or 3-D plot using the commands:
plot 'datafile' using 1:2:4 with labels
splot 'datafile' using 1:2:3:4 with labels

A column of text data can also be used to label the ticmarks along one or more of the plot axes. The example
below plots a line through a series of points with (X,Y) coordinates taken from columns 3 and 4 of the input
datafile. However, rather than generating regularly spaced tics along the x axis labeled numerically, gnuplot
will position a tic mark along the x axis at the X coordinate of each point and label the tic mark with text taken

from column 1 of the input datafile.
set xtics
plot 'datafile' using 3:4:xticlabels(l) with linespoints

There is also an option that will interpret the first entry in a column of input data (i.e. the column heading) as
a text field, and use it as the key title for data plotted from that column. The example given below will use the
first entry in column 2 to generate a title in the key box, while processing the remainder of columns 2 and 4 to

draw the required line:
plot 'datafile' using 1:(f($2)/$4) with lines title columnhead(2)

Another example:
plot for [i=2:6] 'datafile' using i title "Results for ".columnhead(i)

This use of column headings is automated by set datafile columnheaders or set key autotitle columnhead.
See labels (p. 112), using xticlabels (p. 170), plot title (p. 175), using (p. 167), key autotitle (p. 215).

Enhanced text mode

Many terminal types support an enhanced text mode in which additional formatting information can be embed-
ded in the text string. For example, "x~2" will write x-squared as we are used to seeing it, with a superscript 2.
This mode is selected by default when you set the terminal, but may be toggled afterward using " set termoption
[no]enhanced", or disabled for individual strings as in set label "x_2" noenhanced.

Note: For output to TeX-based terminals (e.g. cairolatex, pict2e, pslatex, tikz) all text strings should instead
use TeX/LaTeX syntax. See latex (p. 333).

40 gnuplot 6.1

Enhanced Text Control Codes
Control Example Result Explanation

~ anx a” superscript

_ a_x ay subscript

@ a@*b_{cd} a’éd phantom box (occupies no width)

& d&{spacetb duuuoub inserts space of specified length

~ ~a{.8-} a overprints -’ on ’a’, raised by .8

times the current fontsize
{/Times abc} abc print abc in font Times at current size
{/Times*2 abc} abc print abc in font Times at twice current size
{/Times:Italic abc} abc print abc in font Times with style italic
{/Arial:Bold=20 abc} abc print abc in boldface Arial font size 20
\U+ \U+221E 00 Unicode point U+221E INFINITY

The markup control characters act on the following single character or bracketed clause. The bracketed clause
may contain a string of characters with no additional markup, e.g. 2~ {10}, or it may contain additional markup
that changes font properties. Font specifiers MUST be preceded by a ’/’ character that immediately follows the
opening ’{’. If a font name contains spaces it must be enclosed in single or double quotes.

Examples: The first example illustrates nesting one bracketed clause inside another to produce a boldface A
with an italic subscript i, all in the current font. If the clause introduced by :Normal were omitted the subscript
would be both italic and boldface. The second example illustrates the same markup applied to font "Times

New Roman" at 20 point size.
{/:Bold A_{/:Normal{/:Italic i}}}
{/"Times New Roman":Bold=20 A_{/:Normal{/:Italic 1i}}}

The phantom box is useful for a@ ~b_c to align superscripts and subscripts but does not work well for overwrit-
ing a diacritical mark on a letter. For that purpose it is much better to use an encoding (e.g. utf8) that contains
letters with accents or other diacritical marks. See set encoding (p. 202). Since the box is non-spacing, it is
sensible to put the shorter of the subscript or superscript in the box (that is, after the @).

Space equal in length to a string can be inserted using the &’ character. Thus
'abc&{def}tghi’

would produce
'abc ghi'.

The ™ character causes the next character or bracketed text to be overprinted by the following character or
bracketed text. The second text will be horizontally centered on the first. Thus *a/’ will result in an ’a’ with
a slash through it. You can also shift the second text vertically by preceding the second text with a number,
which will define the fraction of the current fontsize by which the text will be raised or lowered. In this case the
number and text must be enclosed in brackets because more than one character is necessary. If the overprinted
text begins with a number, put a space between the vertical offset and the text ("{abc}{.5 000}’); otherwise
no space is needed ("{abc}{.5 — }’). You can change the font for one or both strings ("a{.5 /*.2 0}’ —an’a’
with a one-fifth-size ‘0’ on top — and the space between the number and the slash is necessary), but you can’t
change it after the beginning of the string. Neither can you use any other special syntax within either string.
Control characters must be escaped, e.g. ~a{.8\ "}’ to print 4. See escape sequences (p. 41) below.

Note that strings in double-quotes are parsed differently than those enclosed in single-quotes. The major dif-
ference is that backslashes may need to be doubled when in double-quoted strings.

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source distribution contains more exam-
ples of the enhanced syntax, as does the demo enhanced_utf8.dem

http://www.gnuplot.info/demo/enhanced_utf8.html

gnuplot 6.1 41

Escape sequences

The backslash character \ introduces an escape sequence representing a single character.

The form \ X, where X is any single character, is handled differently in single- and double- quoted strings. See
quotes (p. 85). The "\ X" is used verbatim in single-quoted non-enhanced text. In double-quoted text "\ X"
becomes "X" except for the special cases \n (newline) \r (return) and \t (tab).

The form \ 000, where 0oo is a 3 digit octal value, can be used to index a known character code in a specific font
encoding. This is mostly useful for the PostScript terminal because it cannot easily handle UTF-8 encoding.
For example, PostScript output historically relied on the Adobe Symbol font, which uses a custom encoding
in which octal 245 represents the infinity symbol. You could embed this in an enhanced text string by giving
the font name and the character code " {/Symbol \245}". This mechanism may also remain useful to access
characters in non-UTFS fonts or locales.

You can specify a character by its Unicode code point as \U+hhhh, where hhhh is the 4 or 5 character hex-
adecimal code point. For example the code point for the infinity symbol oo is \U+221E. This will be converted
to a UTF-8 byte sequence on output if appropriate. In a UTF-8 environment this mechanism is not needed for
printable special characters since they are handled in a text string like any other character. However it is useful
for combining forms or supplemental diacritical marks (e.g. an arrow over a letter to represent a vector). See
utf8 (p. 202), string encoding (p. 83), and the online unicode demo.

Since Unicode codepoints may consist of either 4 or 5 characters, the syntax would become ambiguous if a 4
character escape were immediately followed by another character than might be misinterpreted as being part
of a 5 digit code. In such a case you must separate the escape sequence from the next character.

Example: Create a label "al + a2"
enhanced text: set label "{\U+03B1}1 + {\U+03B1}2" enhanced
non—-enhanced text: set label "\U+03B1\1 + \U+03B1\2" noenhanced

Note that Unicode escape sequences are stored in a string without interpretation. The escape sequence is
replaced by the character it represents when the string is printed or evaluated during substring processing.
Thus after defining a string S = "A + \U+03A3 B", S[5:5] evaluates to "=" rather than "\ ", but (S eq S[1:*])
evaluates to FALSE because S holds the unprocessed escape sequence while evaluation of S[1:*] replaces the
escape sequence with the UTF-8 byte sequence for =. Both will display as "A + £ B" when used in a plot.

Environment

A number of shell environment variables are understood by gnuplot. None of these are required.

GNUTERM, if defined, is passed to "set term" on start-up. This can be overridden by a system or personal
initialization file (see startup (p. 82)) and of course by later explicit set term commands. Terminal options
may be included. E.g.

bash$ export GNUTERM="postscript eps color size 5in, 3in"

GNUHELP, if defined, sets the pathname of the HELP file (gnuplot.gih).

Initialization —at start-up may search for configuration files = $HOME/.gnuplot, and
$XDG_CONFIG_HOME/gnuplot/gnuplotrc. On MS-DOS, Windows and OS/2, files in GNUPLOT or
USERPROFILE are searched. For more details see startup (p. 82).

On Unix, PAGER is used as an output filter for help messages.
On Unix, SHELL is used for the shell command. On MS-DOS and OS/2, COMSPEC is used.

http://www.gnuplot.info/demo/unicode.html

42 gnuplot 6.1

FIT_SCRIPT may be used to specify a gnuplot command to be executed when a fit is interrupted — see fit
(p- 133). FIT_LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The variable
may contain a single directory name, or a list of directories separated by a platform-specific path separator, eg.
> on Unix, or ’; on DOS/Windows/OS/2 platforms. The contents of GNUPLOT_LIB are appended to the
loadpath variable, but not saved with the save and save set commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library (see fonts (p. 61)). For these terminals
GDFONTPATH and GNUPLOT_DEFAULT_GDFONT may affect font selection.

The postscript terminal uses its own font search path. It is controlled by the environmental variable
GNUPLOT_FONTPATH.

GNUPLOT_PS_DIR is used by the postscript driver to search for external prologue files. Depending on the
build process, gnuplot contains either a built-in copy of those files or a default hardcoded path. You can use
this variable to have the postscript terminal use custom prologue files rather than the default prologue files. See
postscript prologue (p. 346).

Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The precedence
of these operators is determined by the specifications of the C programming language. White space (spaces
and tabs) is ignored inside expressions.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered as
"1, "-10", etc; reals as "1.0", "-10.0", "lel", 3.5e-1, etc. The most important difference between the
two forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 =2.5. In
mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result of division of a
negative integer by a positive one may vary among compilers. Try a test like "print -5/2" to determine if your
system always rounds down (-5/2 yields -3) or always rounds toward zero (-5/2 yields -2).

The integer expression " 1/0" may be used to generate an "undefined" flag, which causes a point to be ignored.
Or you can use the pre-defined variable NaN to achieve the same result. See using (p. 167) for an example.

Gnuplot can also perform simple operations on strings and string variables. For example, the expression ("A" .
"B" eq "AB") evaluates as true, illustrating the string concatenation operator and the string equality operator.

A string which contains a numerical value is promoted to the corresponding integer or real value if used in a
numerical expression. Thus ("3" + "4" == 7) and (6.78 == "6.78") both evaluate to true. An integer, but
not a real or complex value, is promoted to a string if used in string concatenation. A typical case is the use of
integers to construct file names or other strings; e.g. ("file" . 4 eq "file4") is true.

Substrings can be specified using a postfixed range descriptor [beg:end]. For example, "ABCDEF"[3:4] ==
"CD" and "ABCDEF"[4:*] == "DEF" The syntax "string"[beg:end] is exactly equivalent to calling the
built-in string-valued function substr("string" ,beg,end), except that you cannot omit either beg or end from the
function call.

Complex values

Arithmetic operations and most built-in functions support the use of complex arguments. Complex constants
are expressed as { <real>,<imag>}, where <real> and <imag> must be numerical constants. Thus {0,1}

gnuplot 6.1 43

represents 'i’. The program predefines a variable I = {0,1} on entry that can be used to generate complex
values in terms of other variables. Thus x + y*I is a valid expression but {x,y} is not. The real and imaginary
components of complex value z can be extracted as real(z) and imag(z). The modulus is given by abs(z). The
phase angle is given by arg(z).

Gnuplot’s 2D and 3D plot styles expect real values; to plot

a complex-valued function f(z) with non-zero imaginary

components you must plot the real or imaginary compo- Eofz) n
nent, or the modulus or phase. For example to represent
the modulus and phase of a function f(z) with complex ar-
gument and complex result it is possible to use the height
of the surface to represent modulus and use the color to
represent the phase. It is convenient to use a color palette
in HSV space with component H (hue), running from 0
to 1, mapped to the range of the phase returned by arg(z),
[-7t:t], so that the color wraps when the phase angle does. By default this would be at H = 0 (red). You can
change this with the start keyword in set palette so that some other value of H is mapped to 0. The example
shown starts and wraps at H = 0.3 (green). See set palette defined (p. 242), arg (p. 44), set angles (p. 183).

0
Real(z) Imag(z)

set palette model HSV start 0.3 defined (0 0 1 1, 1 1 1 1)
set cbrange [-pi:pi]

set cbtics ("-no" -pi, "o" pi)

set pm3d corners2color cl

EO(z) = exp(-z)/z

I = {0,1}

splot '++' using 1:2: (abs(EO0(x+I*y))): (arg(E0(x+I*y))) with pm3d
Constants

Integer constants are interpreted via the C library routine strtoll(). This means that constants beginning with
"0" are interpreted as octal, and constants beginning with "0x" or "0X" are interpreted as hexadecimal.

Floating point constants are interpreted via the C library routine atof().

Complex constants are expressed as { <real>,<imag>}, where <real> and <imag> must be numerical con-
stants. For example, {0,1} represents i’ itself; {3,2} represents 3 + 2i. The curly braces are explicitly required
here. The program predefines a variable I = {0,1} on entry that can be used to avoid typing the explicit form.
For example 3 + 2*I is the same as {3,2}, with the advantage that it can be used with variable coefficient for
the imaginary component. Thus x + y*1 is a valid expression but {x,y} is not.

String constants consist of any sequence of characters enclosed either in single quotes or double quotes. The
distinction between single and double quotes is important. See quotes (p. 85).

Examples:

1 -10 Oxffaabb # integer constants

1.0 -10. lel 3.5e-1 # floating point constants

{1.2, -3.4} # complex constant

"Line 1\nLine 2" # string constant (\n is expanded to newline)
'123\na\456"' # string constant (\ and n are ordinary characters)

44

gnuplot 6.1

Functions

Arguments to math functions in gnuplot can be integer, real, or complex unless otherwise noted. Functions
that accept or return angles (e.g. sin(x)) treat angle values as radians, but this may be changed to degrees using
the command set angles.

Math library and built-in functions

Function Arguments Returns (c indicates complex result)

abs(x) int or real absolute value of z, |z|

abs(x) complex length of x, /real(z)2 + imag(z)2

acos(x) cos™! z (inverse cosine)

acosh(x) cosh™! z (inverse hyperbolic cosine)

airy(x) real Airy function Ai(x) for real x

arg(x) complex the phase of z, —7 <arg(x)< 7

asin(x) sin~! 2 (inverse sin)

asinh(x) sinh™! z (inverse hyperbolic sin)

atan(x) tan~! x (inverse tangent)

atan2(y,x) int or real tan~!(y/z) (inverse tangent)

atanh(x) tanh~! z (inverse hyperbolic tangent)

besjO(x) real Jo Bessel function of x in radians

besj1(x) real J1 Bessel function of x in radians

besjn(n,x) int, real Jp, Bessel function of x in radians

besy0(x) real Y\ Bessel function of x in radians

besy1(x) real Y7 Bessel function of x in radians

besyn(n,x) int, real Y, Bessel function of x in radians

besiO(x) real Modified Bessel function of order O, x in radians
besil(x) real Modified Bessel function of order 1, x in radians
besin(n,x) int, real Modified Bessel function of order n, in radians
cbrt(x) real cube root of x (domain and range both limited to real)
ceil(x) [x], smallest integer not less than the real part of z
conj(x) complex complex conjugate of x

cos(x) cos x, cosine of x

cosh(x) cosh z, hyperbolic cosine of x in radians

EllipticK (k) real k € (-1:1) K (k) complete elliptic integral of the first kind
EllipticE(k) real k € [-1:1] E(k) complete elliptic integral of the second kind
EllipticPi(n,k) real n<1, real k € (-1:1) I1(n, k) complete elliptic integral of the third kind
erf(x) erf(real(x)), error function of real(x)

erfc(x) erfc(real(x)), 1.0 - error function of real(x)

exp(x) e”, exponential function of x

expint(n,x) intn > 0,realx > 0 E,(z)= floo et qt, exponential integral of x
floor(x) | x|, largest integer not greater than the real part of =
gamma(x) I'(x), gamma function of real(x)

ibeta(a,b,x) a,b>0,ze€[0:1] Bl(a,b,z) = FF(E;;F?IE) Jo t*1(1 — t)>~1dt, incomplete beta
inverf(x) inverse error function of real(x)

igamma(a,z) complex, R(a) > 0 incomplete gamma function P(a, z) = F(lz) Jote e tdt

imag(x)

complex

imaginary part of z as a real number

gnuplot 6.1 45

Math library and built-in functions

Function Arguments Returns (c indicates complex result)
int(x) real integer part of x, truncated toward zero
invnorm(x) inverse normal distribution function of real(x)
invibeta(a,b,p) real inverse incomplete beta function
invigamma(a,p) real inverse incomplete gamma function
LambertW(z,k) complex, int ¢ kth branch of complex Lambert W function
lambertw(x) real principal branch (k=0) of Lambert W function
lgamma(x) real InT'(x) for real =
InGamma(x) complex ¢ InT'(x) valid over entire complex plane
log(x) ¢ log, x, natural logarithm (base e) of x
log10(x) ¢ log,qx, logarithm (base 10) of x
norm(x) normal distribution (Gaussian) function of real(x)
rand(x) int pseudo random number in the open interval (0:1)
real(x) real part of x
round(x) |], integer nearest to the real part of z
sgn(x) lifz >0,-1if x <0, 0if z = 0. imag(x) ignored
Sign(x) complex ¢ 0if z =0, otherwise z/|z|
sin(x) ¢ sinx, sine of x
sinh(x) ¢ sinhz, hyperbolic sine of x in radians
sqrt(x) ¢ +/z, square root of x
SynchrotronF(x) real Fz)=z["K 5 (v) dv
tan(x) ¢ tanz, tangent of x
tanh(x) ¢ tanhz, hyperbolic tangent of x in radians
uigamma(a,x) real, real upper incomplete gamma function Q(a, z) = ﬁ [tole~tdt
Voigt(x,y) real Voigt/Faddeeva function £ [%dt
Note: voigt(x, y) = real(faddeeva(x + iy))

zeta(s) complex ¢ Riemann zeta function {(s) = X3, k™°

Special functions from libcerf (only if available)
Function Arguments Returns (c indicates complex result)
cerf(z) complex ¢ complex error function cer f(z) = @ IS et dt
cdawson(z) complex ¢ complex extension of Dawson’s integral D(z) = @6*22 erfi(z)
faddeeva(z) complex ¢ scaled complex complementary error function w(z) = e~ er fe(—iz)
erfi(x) real imaginary error function er f(z) = —i x er f (iz)
FresnelC(x) real Fresnel integral C(z) = [cos(5t?)dt
FresnelS(x) real Fresnel integral S(z) = [y sin(5t%)dt
VP(x,0,7) real Voigt profile VP(z,0,v) = [, G(2';0)L(x — 2';v)da'
VP_fwhm(o,v) real Voigt profile full width at half maximum value

46

gnuplot 6.1

|

Complex special functions from Amos library (only if available)

Function Arguments Returns (c indicates complex result)

Ai(z) complex ¢ complex Airy function Ai(z)

Bi(z) complex ¢ complex Airy function Bi(z)

BesselH1(nu,z) real, complex c H ,Sl) (z) Hankel function of the first kind
BesselH2(nu,z) real, complex ¢ HY (z) Hankel function of the second kind
Bessell(nu,z) real, complex ¢ Jy,(z) Bessel function of the first kind

BesselY (nu,z) real, complex ¢ Y, (z) Bessel function of the second kind
Bessell(nu,z) real, complex ¢ I,(z) modified Bessel function of the first kind
BesselK(nu,z) real, complex ¢ K, (z) modified Bessel function of the second kind
expint(n,z) intn > 0,complex 2 ¢ E,(z) = [{°t "e*! dt, exponential integral

String functions

Function Arguments Returns

gprintf(“format”,x) any string result from applying gnuplot’s format parser
sprintf("format” x,...) multiple string result from C-language sprintf
strlen(”’string”) string number of characters in string
strstrt(”string”,’key”) strings int index of first character of substring “key”
substr(”string”,beg,end) multiple string "string”[beg:end]

split(”’string”,”sep”) string array of substrings

join(array,”’sep”) array,string concatenate array elements into a string
strftime(”timeformat”,t) any string result from applying gnuplot’s time parser
strptime(”timeformat”,s) string seconds since year 1970 as given in string s
system(”command”) string string containing output stream of shell command
trim(” string ”) string string without leading or trailing whitespace
word(”string”,n) string, int returns the nth word in "string”

words(”string”) string returns the number of words in "string”

gnuplot 6.1

47

’ Time functions

Function Arguments Returns

time(x) any the current system time in seconds

timecolumn(N, timeformat”) int, string formatted time data from column N of input
tm_hour(t) time in sec the hour (0..23)

tm_mday(t) time in sec the day of the month (1..31)

tm_min(t) time in sec the minute (0..59)

tm_mon(t) time in sec the month (0..11)

tm_sec(t) time in sec the second (0..59)

tm_wday(t) time in sec the day of the week (Sun..Sat) as (0..6)

tm_week(t) time in sec week of year in ISO8601 "week date” system (1..53)
tm_yday(t) time in sec the day of the year (0..365)

tm_year(t) time in sec the year

weekdate_iso(year,week,day) int time corresponding to ISO 8601 standard week date
weekdate_cdc(year,week,day) int time corresponding to CDC epidemiological week date

] other gnuplot functions

Function Arguments Returns

column(x) int or string numerical value of column x during datafile input
columnhead(x) int string containing first entry of column x in datafile.
exists("X”) string returns 1 if a variable named X is defined, O otherwise.
hsv2rgb(h,s,v) h,s,v € [0:1] 24bit RGB color value.

index(A,x) array, any integer i such that A[i] = x. 0 if no match.

palette(z) real 24 bit RGB palette color mapped to z.
rgbcolor("name”) string 32bit ARGB color from name or string representation.
stringcolumn(x) int or string content of column x as a string

valid(x) int test validity of column x during datafile input
value("name” string returns the value of the named variable.

voxel(X,y,z) real value of the active grid voxel containing point (X,y,z)

Integer conversion functions (int floor ceil round)

Gnuplot integer variables are stored with 64 bits of precision if that is supported by the platform.

Gnuplot complex and real variables are on most platforms stored in IEEE754 binary64 (double) floating point
representation. Their precision is limited to 53 bits, corresponding to roughly 16 significant digits.

Therefore integers with absolute value larger than 2753 cannot be uniquely represented in a floating point
variable. I.e. for large N the operation int(real(N)) may return an integer near but not equal to N.

Furthermore, functions that convert from a floating point value to an integer by truncation may not yield the
expected value if the operation depends on more than 15 significant digits of precision even if the magnitude is
small. For example int(log10(0.1)) returns O rather than -1 because the floating point representation is equivalent
t0 -0.999999999999999... See also overflow (p. 239).

int(x) returns the integer part of its argument, truncated toward zero. If |x| > 2763, i.e. too large to represent
as an integer, NaN is returned. If |x| > 2~52 the return value will lie within a range of neighboring integers
that cannot be distinguished due to limited floating point precision. See integer conversion (p. 47).

48 gnuplot 6.1

floor(x) returns the largest integer not greater than the real part of x. If |x| > 252 the true value cannot be
uniquely determined; in this case the return value is NaN. See integer conversion (p. 47).

ceil(x) returns the smallest integer not less than the real part of x. If |x| > 2752 the true value cannot be
uniquely determined; in this case the return value is NaN. See integer conversion (p. 47).

round(x) returns the integer nearest to the real part of x. If |x| > 2752 the true value cannot be uniquely
determined; in this case the return value is NaN. See integer conversion (p. 47).

Elliptic integrals

The EllipticK(k) function returns the complete elliptic integral of the first kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k~2*sin~2(0))"(-0.5). The domain of k is -1 to 1 (exclusive).

-1
EllipticK (k) = Tr/ V11— k2sin20 do
The EllipticE(k) function returns the complete elliptic integral of the second kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k*2*sin~2(0))"0.5. The domain of k is -1 to 1 (inclusive).

EllipticE(k ﬂ/ 21— kZsin® 0 do

The ElllptlcPl(n,k) function returns the complete elliptic integral of the third kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k~2*sin~2(0))~(-0.5) / (1 - n*sin"2(0)). The parameter n must be less
than 1, while k must lie between -1 and 1 (exclusive). Note that by definition EllipticPi(0,k) == EllipticK(k)
for all possible values of k.

-1
EllipticPi(n, k) = [T/ [(1 — nsin20)v/1 — k2sin20] d
Elliptic integral algorithm: B.C.Carlson 1995, Numerical Algorithms 10:13-26.

Complex Airy functions

Ai(z) and Bi(z) are the Airy functions of complex argument z, computed in terms of the modified Bessel
functions K and I. Supported via an external library containing routines by Donald E. Amos, Sandia National
Laboratories, SAND85-1018 (1985).

= %\/§K1/3<<) (=322"

Bi(z) = \/5[1—1/3(4) + Iy5(Q)]

Complex Bessel functions

BesselJ(nu,z) is the Bessel function of the first kind J_nu for real argument nu and complex argument z.
Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories, SANDS85-
1018 (1985).

BesselY(nu,z) is the Bessel function of the second kind Y_nu for real argument nu and complex argument z.
Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories, SANDS85-
1018 (1985).

Bessell(nu,z) is the modified Bessel function of the first kind I_nu for real argument nu and complex argu-
ment z. Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories,
SANDS85-1018 (1985).

gnuplot 6.1 49

BesselK(nu,z) is the modified Bessel function of the second kind K_nu for real argument nu and complex argu-
ment z. Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories,
SANDS85-1018 (1985).

BesselH1(nu,z) and BesselH2(nu,z) are the Hankel functions of the first and second kind

H1 (nu,z) = J(nu,z) + iY (nu, z)
H2 (nu,z) = J(nu,z) - iY(nu, z)

for real argument nu and complex argument z. Supported via external library containing routines by Donald E.
Amos, Sandia National Laboratories, SANDS85-1018 (1985).

Expint
expint(n,z) returns the exponential integral of order n, where n is an integer >= 0. This is the integral from 1
to infinity of t"(-n) e"(-tz) dt.

E,(z)= [t e " dt

If your copy of gnuplot was built with support for complex functions from the Amos library, then for n>0 the
evaluation uses Amos routine cexint [Amos 1990 Algorithm 683, ACM Trans Math Software 16:178]. In this
case z may be any complex number with -pi < arg(z) <= pi. expint(0,z) is calculated as exp(-z)/z.

If Amos library support is not present, z is limited to real values z >= 0.

Fresnel integrals FresnelC(x) and FresnelS(x)

The cosine and sine Fresnel integrals are calculated using their relationship to the complex error function erf(z).
Due to dependence on erf(z), these functions are only available if libcerf library support is present.

C(z) = [y cos(5t2)dt S(z) = [y sin(5t?)dt

C(z) 4+ iS(z) = Hler f(z) where z = @(1 — i)z

Gamma

gamma(x) returns the gamma function of the real part of its argument. For integer n, gamma(n+1) = n!. If
the argument is a complex value, the imaginary component is ignored. For complex arguments see InGamma
(p- 50).

Igamma

igamma(a, z) returns the lower incomplete gamma function P(a, z), [Abramowitz and Stegun (6.5.1); NIST
DLMF 8.2.4]. If complex function support is present a and z may be complex values; real(a) > 0; For the
complementary upper incomplete gamma function, see uigamma (p. 53).

igamma(a, 2) = P(a, 2) = 2%y*(a,2) = ﬁ Jote te tdt

One of four algorithms is used depending on a and z.

Case (1) When a is large (>100) and (z-a)/a is small (<0.2) use Gauss-Legendre quadrature with coefficients
from Numerical Recipes 3rd Edition section 6.2, Press et al (2007).

Case (2) When z > 1 and z > (a+2) use a continued fraction following Shea (1988) J. Royal Stat. Soc. Series

50 gnuplot 6.1

C (Applied Statistics) 37:466-473.
Case (3) When z < 0 and a < 75 and imag(a) == O use the series from Abramowitz & Stegun (6.5.29).
Otherwise (Case 4) use Pearson’s series expansion.

Note that convergence is poor in some regions of the full domain. If the chosen algorithm does not converge
to within 1.E-14 the function returns NaN and prints a warning.

If no complex function support is present the domain is limited to real arguments a > 0, z >= 0.

Invigamma

The inverse incomplete gamma function invigamma(a,p) returns the value z such that p = igammac(a,z). p is
limited to (0;1]. a must be a positive real number. The implementation in gnuplot has relative accuracy that
ranges from 1.e-16 for a<1 to 5.e-6 for a = 1.e10. Convergence may fail for a < 0.005.

Ibeta

ibeta(a,b,x) returns the normalized lower incomplete beta integral of real arguments a,b > 0, x in [0:1].
. [(a+b _ _
ibeta(a, b, x) = Flsmhs fo 197 (1 —)Lt

If the arguments are complex, the imaginary components are ignored. The implementation in gnuplot uses code
from the Cephes library [Moshier 1989, "Methods and Programs for Mathematical Functions", Prentice-Hall].

Invibeta

The inverse incomplete beta function invibeta(a,b,p) returns the value z such that p = ibeta(a,b,z). a, b are
limited to positive real values and p is in the interval [0,1]. Note that as a, b approach zero (<0.05) invibeta()
approaches 1.0 and its relative accuracy is limited by floating point precision.

LambertW

Lambert W function with complex domain and range. LambertW(z, k) returns the kth branch of the function
W defined by the equation W(z) * exp(W(z)) = z. The complex value is obtained using Halley’s method as
described by Corless et al [1996], Adv. Comp. Math 5:329. The nominal precision is 1.E-13 but convergence
can be poor very close to discontinuities, e.g. branch points.

LnGamma

InGamma(z) returns the natural log of the gamma function with complex domain and range. Implemented
using 14 term approximation following Lanczos [1964], SIAM JNA 1:86-96. The imaginary component of
the result is phase-shifted to yield a continuous surface everywhere except the negative real axis.

Random number generator

The function rand() produces a sequence of pseudo-random numbers between 0 and 1 using an algorithm
from P. L’Ecuyer and S. Cote, "Implementing a random number package with splitting facilities", ACM
Transactions on Mathematical Software, 17:98-111 (1991).

gnuplot 6.1 51

rand (0) returns a pseudo random number in the open interval (0:1)
generated from the current value of two internal
32-bit seeds.

rand(-1) resets both seeds to a standard value.

rand (x) for integer 0 < x < 2731-1 sets both internal seeds
to x.

rand ({x,y}) for integer 0 < x,y < 2731-1 sets seedl to x and
seed2 to y.

Special functions with complex arguments

Some special functions with complex domain are provided through external libraries. If your copy of gnuplot
was not configured to link against these libraries then it will support only the real domain or will not provide
the function at all.

Functions requiring libcerf (http://apps.jcns.fz-juelich.de/libcerf) depend on configuration option —with-
libcerf. This is the default. See cerf (p. 45), cdawson (p. 45), faddeeva (p. 45), erfi (p. 45), VP (p. 45), and
VP_fwhm (p. 45).

Complex Airy, Bessel, and Hankel functions of real order nu and complex arguments require a li-
brary containing routines implemented by Douglas E. Amos, Sandia National Laboratories, SANDS85-
1018 (1985). These routines may be found in netlib (http://netlib.sandia.gov) or in libopenspec-
fun (https://github.com/JulialLang/openspecfun). The corresponding configuration option is —with-
amos=<library directory>. See Ai (p. 48), Bi (p. 48), BesselJ (p. 48), BesselY (p. 48), Bessell (p. 48),
BesselK (p. 48), Hankel (p. 49). The complex exponential integral is provided by netlib or libamos but not
by libopenspecfun. See expint (p. 49).

Synchrotron function

The synchrotron function SynchrotronF(x) describes the power distribution spectrum of synchrotron radiation
as a function of x given in units of the critical photon energy (i.e. critical frequency vc).

F(x) =z [° Ks/5(v) dv where K/, is a modified Bessel function of the second kind.

Chebyshev coefficients for approximation accurate to 1.E-15 are taken from MacLead (2000)
NucllnstMethPhysRes A443:540-545.

Time functions

Time The time(x) function returns the current system time. This value can be converted to a date string with
the strftime function, or it can be used in conjunction with timecolumn to generate relative time/date plots.
The type of the argument determines what is returned. If the argument is an integer, time() returns the current
time as an integer, in seconds from the epoch date, 1 Jan 1970. If the argument is real (or complex), the result
is real as well. If the argument is a string, it is assumed to be a format and it is passed to strftime to provide a
formatted time string. See also time_specifiers (p. 207) and timefmt (p. 271).

Timecolumn timecolumn(N,"timeformat") reads string data starting at column N as a time/date value
and uses "timeformat" to interpret this as "seconds since the epoch" to millisecond precision. If no format
parameter is given, the format defaults to the string from set timefmt. This function is valid only in the using
specification of a plot or stats command. See plot datafile using (p. 167).

52 gnuplot 6.1

Tm_structure Gnuplot stores time internally as a 64-bit floating point value representing seconds since the
epoch date 1 Jan 1970. In order to interpret this as a time or date it is converted to or from a POSIX standard
structure struct_tm. Note that fractional seconds, if any, cannot be retrieved via tm_sec(). The components
may be accessed individually using the functions

e tm_hour(t) integer hour in the range 0-23

* tm_mday(t) integer day of month in the range 1-31
* tm_min(t) integer minute in the range 0-59

* tm_mon(t) integer month of year in the range 0-11

* tm_sec(t) integer second in the range 0-59

tm_wday(t) integer day of the week in the range 0 (Sunday)—6(Saturday)
» tm_yday(t) integer day of the year the range 0-365

* tm_year(t) integer year

Tm_week The tm_week(t, standard) function interprets its first argument t as a time in seconds from 1 Jan
1970. Despite the name of this function it does not report a field from the POSIX tm structure.

If standard = O it returns the week number in the ISO 8601 "week date" system. This corresponds to gnuplot’s
%W time format. If standard = 1 it returns the CDC epidemiological week number ("epi week"). This
corresponds to gnuplot’s %U time format. For corresponding inverse functions that convert week dates to
calendar time see weekdate_iso (p. 52), weekdate_cdc (p. 53).

In brief, ISO Week 1 of year YYYY begins on the Monday closest to 1 Jan YYYY. This may place it in the
previous calendar year. For example Tue 30 Dec 2008 has ISO week date 2009-W01-2 (2nd day of week 1
of 2009). Up to three days at the start of January may come before the Monday of ISO week 1; these days are
assigned to the final week of the previous calendar year. E.g. Fri 1 Jan 2021 has ISO week date 2020-W53-5.

The US Center for Disease Control (CDC) epidemiological week is a similar week date convention that differs
from the ISO standard by defining a week as starting on Sunday, rather than on Monday.

Weekdate_iso Syntax:

time = weekdate_iso(year, week [, day])

This function converts from the year, week, day components of a date in ISO 8601 "week date" format to the
calendar date as a time in seconds since the epoch date 1 Jan 1970. Note that the nominal year in the week
date system is not necessarily the same as the calendar year. The week is an integer from 1 to 53. The day
parameter is optional. If it is omitted or equal to O the time returned is the start of the week. Otherwise day
is an integer from 1 (Monday) to 7 (Sunday). See tm_week (p. 52) for additional information on an inverse
function that converts from calendar date to week number in the ISO standard convention.

Example:
Plot data from a file with column 1 containing ISO weeks
Week cases deaths
2020-05 432 1
calendar_date (w) = weekdate_iso(int(w[1:4]1), int(w[6:7]))
set xtics time format "$b\n%Y"

plot FILE using (calendar_date(strcol(1l))) : 2 title columnhead

gnuplot 6.1 53

Weekdate_cdc Syntax:

time = weekdate_cdc(year, week [, day])

This function converts from the year, week, day components of a date in the CDC/MMWR "epi week " format
to the calendar date as a time in seconds since the epoch date 1 Jan 1970. The CDC week date convention
differs from the ISO week date in that it is defined in terms of each week running from day 1 = Sunday to day
7 = Saturday. If the third parameter is O or is omitted, the time returned is the start of the week. See tm_week
(p. 52) and weekdate_iso (p. 52).

Uigamma

uigamma(a, x) returns the regularized upper incomplete gamma function Q(a, x), NIST DLMF eq 8.2.4 For
the complementary lower incomplete gamma function P(a,x), see igamma (p. 49).
Qa,x)+P(a,x) =1.

vigamma(a, z) = Q(a,z) = 1 — P(a,z) = F(lz) Jrtetemtdt

The current implementation is from the Cephes library (Moshier 2000). The domain is restricted to real a>0,
real x>=0. EXPERIMENTAL: To be replaced by an implementation that handles complex arguments.

Using specifier functions

These functions are valid only in the context of data input. Usually this means use in an expression that provides
an input field of the using specifier in a plot, splot, fit, or stats command. However the scope of the functions
is actually the full clause of the plot command, including for example use of columnhead in constructing the
plot title.

Column The column(x) function may be used only in the using specifier of a plot, splot, fit, or stats com-
mand. It evaluates to the numerical value of the content of column x. If the column is expected to hold a string,
use instead stringcolumn(x) or timecolumn(x, "timeformat"). See plot datafile using (p. 167), stringcolumn
(p. 53), timecolumn (p. 51).

Columnhead The columnhead(x) function may only be used as part of a plot, splot, or stats command. It
evaluates to a string containing the content of column x in the first line of a data file. This is typically used to
extract the column header for use in a plot title. See plot datafile using (p. 167). Example:

set datafile columnheader
plot for [i=2:4] DATA using 1l:i title columnhead (i)

Stringcolumn The stringcolumn(x) function may be used only in the using specification of a data plot or
fit command. It returns the content of column x as a string. strcol(x) is shorthand for stringcolumn(x). If the
string is to be interpreted as a time or date, use instead timecolumn(x, "timeformat"). See plot datafile using
(p. 167).

54 gnuplot 6.1

Valid The valid(x) function may be used only in expressions that are part of a using specification. It can be
used to detect explicit NaN values or unexpected garbage in a field of the input stream, perhaps to substitute a
default value or to prevent further arithmetic operations using NaN. Both "missing" and NaN (not-a-number)
data values are considered to be invalid, but it is important to note that if the program recognizes that a field
is truly missing or contains a "missing" flag then the input line is discarded before the expression invoking
valid() would be called. See plot datafile using (p. 167), missing (p. 197).

Example:

Treat an unrecognized bin value as contributing some constant
prior expectation to the bin total rather than ignoring it.
plot DATA using 1 : (valid(2) ? $2 : prior) smooth unique

Value

B =value("A") is effectively the same as B = A, where A is the name of a user-defined variable. This is useful
when the name of the variable is itself held in a string variable. See user-defined variables (p. 58). It also
allows you to read the name of a variable from a data file. If the argument is a numerical expression, value()
returns the value of that expression. If the argument is a string that does not correspond to a currently defined
variable, value() returns NaN.

Counting and extracting words

word("string",n) returns the nth word in string. For example, word("one two three",2) returns the string
" tWO n .

words("string") returns the number of words in string. For example, words(" a b ¢ d") returns 4.

The word and words functions provide limited support for quoted strings, both single and double quotes can
be used:

print words ("\"double quotes\" or 'single quotes'") # 3

A starting quote must either be preceded by a white space, or start the string. This means that apostrophes in
the middle or at the end of words are considered as parts of the respective word:

print words ("Alexis' phone doesn't work") # 4

Escaping quote characters is not supported. If you want to keep certain quotes, the respective section must be
surrounded by the other kind of quotes:
s = "Keep \"'single quotes'\" or '\"double quotes\"'"

print word(s, 2) # 'single quotes'
print word(s, 4) # "double quotes"

Note, that in this last example the escaped quotes are necessary only for the string definition.

split("string", "sep") uses the character sequence in "sep" as a field separator to split the content of "string"
into individual fields. It returns an array of strings, each corresponding to one field of the original string. The
second parameter "sep" is optional. If "sep" is omitted or if it contains a single space character the fields
are split by any amount of whitespace (space, tab, formfeed, newline, return). Otherwise the full sequence of
characters in "sep" must be matched.

The three examples below each produce an array ["A", "B", "C", "D"]

gnuplot 6.1 55

tl = split("A B C D")
t2 = split("A B C D", " ")
t3 = split("A;B;C;D", "; M)

However the command

t4d = split("A;B; C;D", "; ")

produces an array containing only two strings ["A;B", "C;D"] because the two-character field separator
sequence "; " is found only once.

Note: Breaking the string into an array of single characters using an empty string for sep is not currently
implemneted. You can instead accomplish this using single character substrings: Array[i] = "string" [i:i]

join(array, "sep") concatenates the string elements of an array into a single string containing fields delimited
by the character sequence in "sep". Non-string array elements generate an empty field. The complementary
operation split break extracts fields from a string to create an array. Example:

array A = ["A", "B", , 7, "E"J
print join(A,";")
A;B; ;G E

trim(" padded string ") returns the original string stripped of leading and trailing whitespace. This is useful
for string comparisons of input data fields that may contain extra whitespace. For example

plot FOO using 1:(trim(strcol(3)) eg "A" ? $2 : NaN)

Zeta

zeta(s) is the Riemann zeta function with complex domain and range. C(s) =22k~

This implementation uses the polynomial series described in algorithm 3 of P. Borwein [2000] Canadian
Mathematical Society Conference Proceedings. The nominal precision is 1.e-16 over the complex plane.
However note that this does not guarantee that non-trivial zeros of the zeta function will evaluate exactly to
0.

Operators
The operators in gnuplot are the same as the corresponding operators in the C programming language, ex-

cept that all operators accept integer, real, and complex arguments, unless otherwise noted. The ** operator
(exponentiation) is supported, as in FORTRAN.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used to change
the order of operation. Thus -2%*2 = -4, but (-2)**2 = 4.

Unary

The following is a list of all the unary operators:

56 gnuplot 6.1

Unary Operators ‘

Symbol Example Explanation

- -a unary minus

+ +a unary plus (no-operation)

~ ~a * one’s complement

! la * logical negation

! a! * factorial

$ $3 * data column in ‘using’ specifier
| |A| cardinality of array A

(*) Starred explanations indicate that the operator requires an integer argument.

The factorial operator returns an integer when N! is sufficiently small (N <= 20 for 64-bit integers). It returns
a floating point approximation for larger values of N.

The cardinality operator |...| returns the number of elements |A| in array A. It returns the number of data lines
|$DATA | when applied to datablock $DATA.

Binary

The following is a list of all the binary operators:

Binary Operators
Symbol Example Explanation
* K a**p exponentiation
* a*b multiplication
/ a/b division
% asb * modulo
+ a+b addition
- a-b subtraction
== a==b equality
= al=b inequality
< a<b less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
<< Oxff<<l left shift unsigned
>> Oxff>>1 right shift unsigned
& a&b * bitwise AND
4 a’b * bitwise exclusive OR
| alb * bitwise inclusive OR
&& a&&b * logical AND
[allb * Jogical OR
= a = b assignment
, (a,b) serial evaluation

A.B string concatenation

eq A eg B string equality
ne A ne B string inequality

gnuplot 6.1 57

(*) Starred explanations indicate that the operator requires integer arguments. Capital letters A and B indicate
that the operator requires string arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C. That is, the second && operand is not
evaluated if the first is false; the second || operand is not evaluated if the first is true.

Serial evaluation occurs only in parentheses and is guaranteed to proceed in left to right order. The value of
the rightmost subexpression is returned.

Ternary

There is a single ternary operator:

Ternary Operator

Symbol Example Explanation
?: a?b:c ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is evaluated.
If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the third argument (c) is
evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only when
certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <=x < 1, 1/x for 1 <=x < 2, and undefined elsewhere:

f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 ? 1/x : 1/0
plot f(x)

Note that gnuplot quietly ignores undefined values when plotting, so the final branch of the function (1/0) will
produce no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity
if a line style is used. To plot it discontinuously, create separate functions for the two pieces.

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but only if the
datum in column 4 is non-negative:

plot 'file' using 1:($4<0 ? 1/0 : ($2+4S$3)/2)

For an explanation of the using syntax, please see plot datafile using (p. 167).

Summation and cumulative product

Gnuplot provides operators for iterative sum () and iterative product (IT).
immin S (@) and - JTZ00 f(2)

i=min i=min
A summation expression has the form

sum [<var> = <start> : <end>] <expression>

<var> is treated as an integer variable that takes on successive integral values from <start> to <end>. For
each of these, the current value of <expression> is added to a running total whose final value becomes the
value of the summation expression. Examples:

58 gnuplot 6.1

print sum [i=1:10] i

55.
Equivalent to plot 'data' using 1: ($2+$3+$4+$5+S56+...)
plot 'data' using 1 : (sum [col=2:MAXCOL] column(col))

It is not necessary that <expression> contain the variable <var>. Although <start> and <end> can be
specified as variables or expressions, their value cannot be changed dynamically as a side-effect of carrying out
the summation. If <end>> is less than <start> then the value of the summation is zero.

The equivalent expression for an iterative product has the form

prod [<var> = <start> : <end>] <expression>

Thus
N! == prod [i=1:N] i

If <end>> is less than <start> then no iteration is performed and the value is returned as 1.0.

Gnuplot-defined variables

Gnuplot maintains a number of read-only variables that reflect the current internal state of the program and
the most recent plot. These variables begin with the prefix "GPVAL_". Examples include GPVAL_TERM,
GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN. Type show variables all to display the complete list
and current values. Values related to axes parameters (ranges, log base) are values used during the last plot,
not those currently set.

Example: To calculate the fractional screen coordinates of the point [X,Y]

GRAPH_X (X - GPVAL_X_MIN) / (GPVAL_X_MAX — GPVAL_X_MIN)

GRAPH_Y = (Y - GPVAL_Y MIN) / (GPVAL_Y MAX - GPVAL_Y MIN)

SCREEN_X = GPVAL_TERM_XMIN + GRAPH_X * (GPVAL_TERM_XMAX - GPVAL_TERM_XMIN)
SCREEN_Y = GPVAL_TERM_YMIN + GRAPH Y * (GPVAL_TERM_YMAX - GPVAL_TERM_YMIN)
FRAC_X = SCREEN_X * GPVAL_TERM SCALE / GPVAL_TERM XSIZE

FRAC_Y = SCREEN_Y * GPVAL_TERM_SCALE / GPVAL_TERM_YSIZE

The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot command terminates early
due to an error. The most recent error message is stored in the string variable GPVAL_ERRMSG. Both
GPVAL_ERRNO and GPVAL_ERRMSG can be cleared using the command reset errors.

Interactive terminals with mouse functionality maintain read-only variables with the prefix "MOUSE_". See
mouse variables (p. 79) for details.

The fit mechanism uses several variables with names that begin "FIT_". It is safest to avoid using such names.
When using set fit errorvariables, the error for each fitted parameter will be stored in a variable named like
the parameter, but with "_err" appended. See the documentation on fit (p. 133) and set fit (p. 203) for details.

See user-defined variables (p. 58), reset errors (p. 181), mouse variables (p. 79), and fit (p. 133).

User-defined variables and functions

New user-defined variables and functions of one through twelve variables may be declared and used anywhere,
including on the plot command itself.

User-defined function syntax:

<func-name> (<dummyl> {, <dummy2>} ... {,<dummyl2>}) = <expression>

gnuplot 6.1 59

where <expression> is defined in terms of <dummy1> through <dummy12>. This form of function defini-
tion is limited to a single line. More complicated multi-line functions can be defined using the function block
mechanism (new in this version). See function blocks (p. 142).

User-defined variable syntax:

<variable-name> = <constant-expression>
Examples:

w = 2

q = floor(tan(pi/2 - 0.1))

f(x) = sin(w*x)

sinc(x) = sin(pi*x)/ (pi*x)

delta(t) = (£t == 0)

ramp(t) = (¢t > 0) 2t : O

min(a,b) = (a < b) 2 a : b

comb (n,k) = n!/(k!'*(n-k)!)

len3d(x,y,z) = sgrt(x*x+y*y+z*z)

plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)

file = "mydata.inp"

file(n) = sprintf ("run_%d.dat",n)

The final two examples illustrate a user-defined string variable and a user-defined string function.

Variables pi (3.14159...), Inf (INFINITY), and NaN (IEEE "Not a Number") are defined at program entry.
You can redefine these to something else if you really need to. The original values can be recovered by reset
session or by setting:

pi = GPVAL_pi; Inf = GPVAL_Inf; NaN = GPVAL_NaN

Other variables may be defined under various gnuplot operations like mousing in interactive terminals or fitting;
see gnuplot-defined variables (p. 58) for details.

You can check for existence of a given variable V by the exists(" V") expression. For example

a = 10
if (exists("a")) print "a is defined"
if (!'exists("b")) print "b is not defined"

Valid names are the same as in most programming languages: they must begin with a letter, but subsequent
characters may be letters, digits, or "_".

Each function definition is made available as a special string-valued variable with the prefix ‘GPFUN_".

Example:
set label GPFUN_sinc at graph .05,.95

See show functions (p. 292), functions (p. 171), gnuplot-defined variables (p. 58), macros (p. 84), value
(p. 54).

Arrays

Arrays are implemented as indexed lists of user variables. The elements in an array are not limited to a single
type of variable. Arrays must be created explicitly before being referenced. The size of an array cannot be
changed after creation. Array elements are initially undefined unless they are provided in the array declaration.
In most places an array element can be used instead of a named user variable.

The cardinality (number of elements) of array A is given by the expression |A]|.

Examples:

60 gnuplot 6.1

array A[6]

Al1] =1

A[2] = 2.0

A[3] = {3.0, 3.0}

A[4] = "four"

A[6] = A[2]**3

array B[6] = [1, 2.0, A[3], "four", , B[2]**3]

array C = split("A B C D E F")

do for [i=1:6] { print A[i], B[i] }
11
2.0 2.0
{3.0, 3.0} {3.0, 3.0}
four four
<undefined> <undefined>
8.0 8.0

Note: Arrays and variables share the same namespace. For example, assignment of a string to a variable named
FOO will destroy any previously created array with name FOO.

The name of an array can be used in a plot, splot, fit, or stats command. This is equivalent to providing a file
in which column 1 holds the array index (from 1 to size), column 2 holds the value of real(A[i]) and column 3
holds the value of imag(Al[i]).

Example:

array A[200]
do for [1=1:200] { A[i] = sin(i * pi/100.) }
plot A title "sin(x) in centiradians"

When plotting the imaginary component of complex array values, it may be referenced either as imag(A[$1])
or as $3. These two commands are equivalent

plot A using (real(A[S$1])) : (imag(A[$1]))
plot A using 2:3

Array functions

Starting with gnuplot version 6, an array can be passed to a function or returned by a function. For example a
simple dot-product function acting on two equal-sized numerical arrays could be defined:

dot (A,B) = (|A] != |B|]) ? NaN : sum [i=1:|A|] A[i] * B[i]

Built-in functions that return an array include the slice operation array[min:max] and the index retrieval function
index(Array,value).

T = split("A B C D E F")
U = T[3:4]
print T
["a", "B", "C", "D", "E", "F"]
print U
["c", "bD"]
print index(T, "D")
4

Note that T and U in this example are now arrays, whether or not they had been previously declared.

gnuplot 6.1 61

Array indexing

Array indices run from 1 to N for an array with N elements. Element i of array A is accessed by A[i]. The built-
in function index(Array, <value>) returns an integer i such that Ali] is equal to <value>, where <value>
may be any expression that evaluates to a number (integer, real, or complex) or a string. The array element
must match in both type and value. A return of 0 indicates that no match was found.
array A = [4.0, 4, "4"]
print index(A, 4)
2
print index(A, 2.+2.)
1
print index(A, "D4"[2:2])
3

Fonts

Gnuplot does not provide any fonts of its own. It relies on external font handling, the details of which un-
fortunately vary from one terminal type to another. Brief documentation of font mechanisms that apply to
more than one terminal type is given here. For information on font use by other individual terminals, see the
documentation for that terminal.

Although it is possible to include non-alphabetic symbols by temporarily switching to a special font, e.g. the
Adobe Symbol font, the preferred method is now to choose UTF-8 encoding and treat the symbol like any other
character. Alternatively you can specify the unicode entry point for the desired symbol as an escape sequence in
enhanced text mode. See encoding (p. 202), unicode (p. 41), locale (p. 223), and escape sequences (p. 41).

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)

Some terminals, including all the cairo-based terminals, access fonts via the fontconfig system library. Please
see the fontconfig user manual.

It is usually sufficient in gnuplot to request a font by a generic name and size, letting fontconfig substitute a
similar font if necessary. The following will probably all work:

set term pdfcairo font "sans, 12"
set term pdfcairo font "Times, 12"
set term pdfcairo font "Times-New-Roman, 12"

Gd (png, gif, jpeg, sixel terminals)

Font handling for the png, gif, jpeg, and sixelgd terminals is done by the libgd library. At a minimum it provides
five basic fonts named tiny, small, medium, large, and giant that cannot be scaled or rotated. Use one of
these keywords instead of the font keyword. E.g.

set term png tiny

On many systems libgd can also use generic font handling provided by the fontconfig tools (see fontcon-
fig (p. 61)). On most systems without fontconfig, libgd provides access to Adobe fonts (*.pfa *.pfb) and to
TrueType fonts (*.ttf). You must give the name of the font file, not the name of the font inside it, in the form
" <face> {,<size>}". <face> is either the full pathname to the font file, or the first part of a filename in one

http://fontconfig.org/fontconfig-user.html

62 gnuplot 6.1

of the directories listed in the GDFONTPATH environmental variable. That is, ’set term png font "Face"’ will
look for a font file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. For example, if
GDFONTPATH contains /usr/local/fonts/ttf:/usr/local/fonts/pfa then the following pairs of commands are
equivalent

set term png font "arial"

set term png font "/usr/local/fonts/ttf/arial.ttf"

set term png font "Helvetica"

set term png font "/usr/local/fonts/pfa/Helvetica.pfa"

To request a default font size at the same time:

set term png font "arial, 11"

If no specific font is requested in the "set term" command, gnuplot checks the environmental variable
GNUPLOT_DEFAULT_GDFONT.

Postscript (also encapsulated postscript *.eps)

PostScript font handling is done by the printer or viewing program. Gnuplot can create valid PostScript or
encapsulated PostScript (*.eps) even if no fonts at all are installed on your computer. Gnuplot simply refers to
the font by name in the output file, and assumes that the printer or viewing program will know how to find or
approximate a font by that name.

All PostScript printers or viewers should know about the standard set of Adobe fonts Times-Roman, Helvetica,
Courier, and Symbol. It is likely that many additional fonts are also available, but the specific set depends on
your system or printer configuration. Gnuplot does not know or care about this; the output *.ps or *.eps files
that it creates will simply refer to whatever font names you request.

Thus

set term postscript eps font "Times-Roman, 12"

will produce output that is suitable for all printers and viewers.

On the other hand

set term postscript eps font "Garamond-Premier-Pro-Italic"

will produce a valid PostScript output file, but since it refers to a specialized font only some printers or viewers
will be able to display the exact font that was requested. Most will substitute a different font.

However, it is possible to embed a specific font in the output file so that all printers will be able to use it. This
requires that the a suitable font description file is available on your system. Note that some font files require
specific licensing if they are to be embedded in this way. See postscript fontfile (p. 345) for more detailed
description and examples.

Glossary

As gnuplot has evolved over more than 30 years, the meaning of certain words used in commands and in the
documentation may have diverged from current common usage. This section explains how some of these terms
are used in gnuplot.

The term "terminal" refers to an output mode, not to the thing you are typing on. For example, the command
set terminal pdf means that subsequent plotting commands will produce pdf ouput. Usually you would want
to accompany this with a set output "filename" command to control where the pdf output is written.

gnuplot 6.1 63

A "page" or "screen" or "canvas" is the entire area addressable by gnuplot. On a desktop it is a full window;
on a plotter, it is a single sheet of paper.

When discussing data files, the term "record" denotes a single line of text in the file, that is, the characters
between newline or end-of-record characters. A "point" is the datum extracted from a single record. A
"block" of data is a set of consecutive records delimited by blank lines. A line, when referred to in the context
of a data file, is a subset of a block. Note that the term "data block" may also be used to refer to a named
block of inline data (see datablocks (p. 63)).

Inline data and datablocks

There are two mechanisms for embedding data into a stream of gnuplot commands. If the special filename ’-’
appears in a plot command, then the lines immediately following the plot command are interpreted as inline
data. See special-filenames (p. 166). Data provided in this way can only be used once, by the plot command
it follows.

The second mechanism defines a named data block as a here-document. The named data is persistent and may
be referred to by more than one plot command. Example:

$Mydata << EOD

11 22 33 first line of data

44 55 66 second line of data

comments work just as in a data file

77 88 99

EOD

stats $Mydata using 1:3

plot $Mydata using 1:3 with points, $Mydata using 1:2 with impulses

Data block names must begin with a $ character, which distinguishes them from other types of persistent
variables. The end-of-data delimiter (EOD in the example) may be any sequence of alphanumeric characters.
A data block definition cannot be placed inside the bracketed clause of an iteration or an if/else/while condition.

For a parallel mechanism that stores executable commands rather than data in a named block, see function
blocks (p. 142).

The storage associated with named data blocks can be released using undefine command. undefine $* frees
all named data and function blocks at once.

Iteration
gnuplot supports command iteration and block-structured

if/else/while/do constructs. See if (p. 144), while
(p. 306), and do (p. 131). Simple iteration is possible

inside plot or set commands. See plot for (p. 174).

General iteration spanning multiple commands is possi- I term Fourier series 100 term Fourier series
ble using a block construct as shown below. For a related
new feature, see the summation (p. 57) expression type.
Here is an example using several of these new syntax fea-
tures: 10 term Fourier series 1000 term Fourier series

set multiplot layout 2,2

64 gnuplot 6.1

fourier(k, x) = sin(3./2*k)/k * 2./3*cos (k*x)

do for [power = 0:3] {
TERMS = 10**power
set title sprintf ("%$g term Fourier series", TERMS)
plot 0.5 + sum [k=1:TERMS] fourier (k,x) notitle

I3

unset multiplot

Iteration is controlled by an iteration specifier with syntax

for [<var> in "string of N elements"]
for [<var> = <start> : <end> { : <increment> }]

or

for [<var> in Array]

In the first case <var>> is a string variable that successively evaluates to single-word substrings 1 to N of the
string in the iteration specifier. In the second case <start>, <end>, and <increment> are integers or integer
expressions.

In the third case <var> is set to successive elements of the array regardless of whether the element is a
number or a string. Any undefined array elements are silently skipperd. Iteration over array elements is
EXPERIMENTAL (details may change before it appears in a stable gnuplot release version.

The scope of the iteration variable is private to that iteration. See scope (p. 81). You cannot permanently
change the value of the iteration variable inside the iterated clause. If the iteration variable has a value prior
to iteration, that value will be retained or restored at the end of the iteration. For example, the following
commands will print 12345678910 A.

i = "A"

do for [i=1:10] { print i; i=10; }

print 1

Linetypes, colors, and styles

In very old gnuplot versions, each terminal type provided a set of distinct "linetypes" that could differ in color,
in thickness, in dot/dash pattern, or in some combination of color and dot/dash. These colors and patterns
were not guaranteed to be consistent across different terminal types although most used the color sequence
red/green/blue/magenta/cyan/yellow. You can select this old behaviour via the command set colorsequence
classic, but by default gnuplot now uses a terminal-independent sequence of 8 colors.

You can further customize the sequence of linetype properties interactively or in an initialization file. See set
linetype (p. 221). Several sample initialization files are provided in the distribution package.

The current linetype properties for a particular terminal can be previewed by issuing the test command after
setting the terminal type.

Successive functions or datafiles plotted by a single command will be assigned successive linetypes in the current
default sequence. You can override this for any individual function, datafile, or plot element by giving explicit
line properties in the plot command.

Examples:

plot "foo", "bar" # plot two files using linetypes 1, 2
plot sin(x) linetype 4 # use linetype color 4

gnuplot 6.1 65

In general, colors can be specified using named colors, rgb (red, green, blue) components, hsv (hue, saturation,
value) components, or a coordinate along the current pm3d palette. The keyword linecolor may be abbreviated
to lc.

Examples:

plot sin(x) lc rgb "violet"
plot sin(x) lc rgb "#FFOOFE"
plot sin(x) lc palette cb -45

use one of gnuplot's named colors
explicit RGB triple in hexadecimal
whatever color corresponds to —-45

in the current cbrange of the palette
fractional value along the palette

4 o o 3

plot sin(x) lc palette frac 0.3

See colorspec (p. 65), show colornames (p. 291), hsv (p. 47), set palette (p. 240), cbrange (p. 291). See
also set monochrome (p. 226).

Linetypes also have an associated dot-dash pattern although not all terminal types are capable of using it. You
can specify the dot-dash pattern independent of the line color. See dashtype (p. 67).

Colorspec

Many commands allow you to specify a linetype with an explicit color.

Syntax:
{linecolor | 1lc} {"colorname" | <colorspec> | <n>}
{textcolor | tc} {<colorspec> | {linetype | 1t} <n>}
{fillcolor | fc} {<colorspec> | linetype <n> | linestyle <n>}

where <colorspec> has one of the following forms:

rgbcolor "colorname" # e.g. "blue"

rgbcolor "OxRRGGBB" # string containing hexadecimal constant
rgbcolor "OxAARRGGBB" # string containing hexadecimal constant
rgbcolor "#RRGGBB" # string containing hexadecimal in x11 format
rgbcolor "#AARRGGBB" # string containing hexadecimal in x11 format
rgbcolor <integer val> # integer value representing AARRGGBB
rgbcolor variable #

palette frac <val> #

palette cb <value> #

integer value is read from input file
<val> runs from 0 to 1
<val> lies within cbrange

palette z

palette <colormap> # use named colormap rather than current palette
variable # color index is read from input file

background or bgnd # background color

black

The "<n>" is the linetype number the color of which is used, see test (p. 303).

"colorname™" refers to one of the color names built in to gnuplot. For a list of the available names, see show
colornames (p. 291).

Hexadecimal constants can be given in quotes as "#RRGGBB" or "0xRRGGBB", where RRGGBB represents
the red, green, and blue components of the color and must be between 00 and FF. For example, magenta =
full-scale red + full-scale blue could be represented by "0xFFOOFF", which is the hexadecimal representation
of (255 << 16) + (0 << 8) + (255).

"#AARRGGBB" represents an RGB color with an alpha channel (transparency) value in the high bits. An
alpha value of O represents a fully opaque color; i.e., "#00RRGGBB" is the same as "#RRGGBB". An alpha
value of 255 (FF) represents full transparency.

66 gnuplot 6.1

For a callable function that converts any of these forms to a 32bit integer representation of the color, see
expressions functions rgbcolor (p. 47).

The color palette is a linear gradient of colors that smoothly maps a single numerical value onto a particular
color. Two such mappings are always in effect. palette frac maps a fractional value between 0 and 1 onto
the full range of the color palette. palette cb maps the range of the color axis onto the same palette. See set
cbrange (p. 291). See also set colorbox (p. 194). You can use either of these to select a constant color from
the current palette.

"palette z" maps the z value of each plot segment or plot element into the cbrange mapping of the palette.
This allows smoothly-varying color along a 3d line or surface. It also allows coloring 2D plots by palette values
read from an extra column of data (not all 2D plot styles allow an extra column). There are two special color
specifiers: background (short form bgnd) for background color and black.

Background color

Most terminals allow you to set an explicit background color for the plot. The special linetype background
(short form bgnd) will draw in this color, and is also recognized as a color name. Examples:

This will erase a section of the canvas by writing over it in the

background color

set term wxt background rgb "gray75"

set object 1 rectangle from x0,y0 to x1,yl fillstyle solid fillcolor bgnd

Draw an "invisible" line at y=0, erasing whatever was underneath

plot 0 1t background

Linecolor variable

Ic variable tells the program to use the value read from one column of the input data as a linetype index, and
use the color belonging to that linetype. This requires a corresponding additional column in the using specifier.
Is variable does the same except the value read from the input data stream is interpreted as the index of a
linestyle rather than a linetype. Text colors can be set similarly using tc variable.

Examples:

Use the third column of data to assign colors to individual points
plot 'data' using 1:2:3 with points lc variable

A single data file may contain multiple sets of data, separated by two
blank lines. Each data set is assigned as index value (see "“index’)
that can be retrieved via the “using’ specifier “column(-2)°

See “pseudocolumns’ . This example uses to value in column -2 to
draw each data set in a different line color.
plot 'data' using 1:2:(column(-2)) with lines lc variable

Palette

Syntax

{lc|fcltc} palette {z}

{lc|fcl|tc} palette frac <fraction>
{lclfcltc} palette cb <fixed z-value>
fc palette <colormap>

gnuplot 6.1 67

The palette defines a range of colors with gray values between O and 1. palette frac <fraction> selects the
color with gray value <fraction>.

palette cb <z-value>> selects the single color whose fractional gray value is (z - cbmin) / (cbmax - cbmin).

palette and palette z both map the z coordinate of the plot element being colored onto the current palette. If
z is outside cbrange it is by default mapped to palette fraction O or palette fraction 1. If the option set pm3d
noclipceb is set, then quadrangles in a pm3d plot whose z values are out of range will not be drawn at all.

fillcolor palette <colormap> maps the z coordinate of a plot element onto a previously saved named colormap
instead of using the current palette. See set colormap (p. 189).

If the colormap has a separate range associated with it, that range is used to map z values analogous to the use
of cbrange to map the standard palette. If there is no separate range for this colormap then cbrange is used.

Rgbcolor variable

You can assign a separate color for each data point, line segment, or label in your plot. lc rgbcolor variable
tells the program to read RGB color information for each line in the data file. This requires a corresponding
additional column in the using specifier. The extra column is interpreted as a 24-bit packed RGB triple. If the
value is provided directly in the data file it is easiest to give it as a hexadecimal value (see rgbcolor (p. 47)).
Alternatively, the using specifier can contain an expression that evaluates to a 24-bit RGB color as in the
example below. Text colors are similarly set using tc rgbcolor variable.

Example:

Place colored points in 3D at the x,y,z coordinates corresponding to
their red, green, and blue components

rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int (b)

splot "data" using 1:2:3:(rgb($1,%$2,$3)) with points lc rgb variable

Dashtype

The dash pattern (dashtype) is a separate property associated with each line, analogous to linecolor or
linewidth. It is not necessary to place the current terminal in a special mode just to draw dashed lines. L.e. the
old command set term <termname> {solid|dashed} is now ignored.

All lines have the property dashtype solid unless you specify otherwise. You can change the default for a
particular linetype using the command set linetype so that it affects all subsequent commands, or you can
include the desired dashtype as part of the plot or other command.

Syntax:
dashtype N # predefined dashtype invoked by number
dashtype "pattern" # string containing a combination of the characters

dot (.) hyphen (-) underscore(_) and space.
dashtype (sl,el,s2,e2,s3,e3,s4,e4) # dash pattern specified by 1 to 4
numerical pairs <solid length>, <emptyspace length>

Example:

Two functions using linetype 1 but distinguished by dashtype
plot f1(x) with lines 1t 1 dt solid, f2(x) with lines 1t 1 dt 3

Some terminals support user-defined dash patterns in addition to whatever set of predefined dash patterns they
offer.

Examples:

68 gnuplot 6.1

plot f(dt 3

plot £ dc ".. "

plot f(x) dt (2,5,2,15)
set dashtype 11 (2,4,4,7)
plot f(x) dt 11

use terminal-specific dash pattern 3
construct a dash pattern on the spot
numerical representation of the same pattern
define new dashtype to be called by index
plot using our new dashtype

X)
x)

H= H= H

If you specify a dash pattern using a string the program will convert this to a sequence of <solid>,<empty>
pairs. Dot "." becomes (2,5), dash "-" becomes (10,10), underscore "_" becomes (20,10), and each space
character " " adds 10 to the previous <empty> value. The command show dashtype will show both the
original string and the converted numerical sequence.

Linestyles vs linetypes

A linestyle is a temporary association of properties linecolor, linewidth, dashtype, and pointtype. It is defined
using the command set style line. Once you have defined a linestyle, you can use it in a plot command to
control the appearance of one or more plot elements. In other words, it is just like a linetype except for its
lifetime. Whereas linetypes are permanent (they last until you explicitly redefine them), linestyles last until
the next reset of the graphics state.

Examples:

define a new line style with terminal-independent color cyan,

linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 1t rgb "cyan" 1lw 3 pt 6

plot sin(x) with linespoints 1ls 5 # user-defined line style 5

Special linetypes

A few special (non-numerical) linetypes are recognized.
It black specifies a solid black line.

It background or It bgnd specifies a solid line with the background color of the current terminal. See back-
ground (p. 66).

It nodraw skips drawing the line altogether. This is useful in conjunction with plot style linespoints. It allows
you to suppress the line component of the plot while retaining point properties that are available only in this
plot style. For example

plot f(x) with linespoints 1t nodraw pointinterval -3

will draw only every third point and will isolate it by placing a small circle of background color underneath it.
See linespoints (p. 113). It nodraw may also be used to suppress a particular set of lines that would otherwise
be drawn automatically. For example you could suppress certain contour levels in a contour plot by setting their
linetype to nodraw.

Layers

A gnuplot plot is built up by drawing its various components in a fixed order. This order can be modified by

assigning some components to a specific layer using the keywords behind, back, or front. For example, to

replace the background color of the plot area you could define a colored rectangle with the attribute behind.
set object 1 rectangle from graph 0,0 to graph 1,1 fc rgb "gray" behind

gnuplot 6.1 69

The order of drawing is

behind

back

the plot itself

the plot legend (" key’)
front

Within each layer elements are drawn in the order

grid, axis, and border elements

pixmaps in numerical order

objects (rectangles, circles, ellipses, polygons) in numerical order
labels in numerical order

arrows in numerical order

In the case of multiple plots on a single page (multiplot mode) this order applies separately to each component
plot, not to the multiplot as a whole.

An exception to this is that several TeX-based terminals (e.g. pslatex, cairolatex) accumulate all text elements
in one output stream and graphics in a separate output stream; the text and graphics are then combined to yield
the final figure. In general this leaves each text element either completely behind or completely in front of the
graphics.

70 gnuplot 6.1

Marks

Version 6.1 introduces a new class of objects called marks. These are user-defined shapes composed of lines
and polygons. Marks can be placed individually by set object mark, analogous to existing object types such as
rectangles and circles. Marks can also used as elements of a plot by new 2D plot styles with marks and with
linesmarks, which are analogous to existing plot styles with points and with linespoints.

Individual marks are defined and managed by new commands set mark, unset mark, show mark, save marks.
These commands are analogous to existing commands that define and manage arrow styles and labels. Each
mark definition is assigned a numeric identifying tag used to select it in subsequent plot commands or object
definitions.

Once defined, a mark can be further modified by translation, rotation, aspect ratio deformation, and application
of color or fill properties.

If a mark is given a fillcolor and fillstyle when it is defined by set mark, these take precedence over any fill
properties in a plot or object that the mark appears in. If no fillstyle is given in set mark the mark will be
rendered with the style given in the plot command or set object command if there is one, otherwise it will use
the global setting from set style fill.

The syntax used to define a mark is fairly complex. Furthermore the mark definition may require reading
coordinate data from a file or datablock. For these reasons marks are typically defined in a separate file and
loaded before use in plotting. See set mark (p. 225).

Mark data

The data structure for each mark holds an identifying numeric tag, a title that will be reported by "show mark",
a fill style, and a fill color. These properties are all controlled using the set mark (p. 225) command.

set mark <tab> {<data>} {<properties>}

The mark also holds an array of data describing the vertices of polygons and lines. This section describes the
format and interpretation of mark data.

The vertices of mark elements are read sequentially, with an empty record separating one polygon or line
segment from the next. This is similar to the input format used for plot with polygons. If you add vertices
using set mark N append <data> the empty record is added automatically.

Each vertex has three values [x y mode]. The mode values are

0 (default) use whatever stroke and fill the fillstyle implies
always stroke, never fill

always fill, never stroke

always stroke and fill

fill with background color

BSw N e

If the mode value is O or not present, each group of vertices will be treated as a filled polygon if the active
fillstyle is not "fs empty", and will be stroked if the active fillstyle is not "fs noborder". This is the default.

Here is an example of defining three triangular marks. One will always be drawn as an empty triangle (mode
1). The second will always be drawn as a filled triangle with no border (mode 2). The third will default to
whatever fillstyle is active when the mark is used. This would typically be the fillstyle given in a command plot
with marks mt 3 or in a command set object mark mt 3.

array t = [{-0.5, 0}, {0, 0.7}, {0.5, 0}, {-0.5, 0} 1
set mark 1 t using 2:3:(1) title "empty triangle"

gnuplot 6.1 71

set mark 2 t using 2:3:(2) title "filled triangle"
set mark 3 t using 2:3 title "generic triangle"

For an example of the format as provided in a file or datablock see marks examples annotation (p. 74) or
marks examples windbarbs (p. 75).

Marks examples

The examples below illustrate a variety of ways that marks can be used.

Example: custom point shapes

The line segments and closed areas making up a mark definition may either be provided as [x,y] coordinates
or as a pair of parametric functions x(t),y(t). One way of looking at the set mark command is that it acts like
a simple plot command, plotting either data or a parametric function. In fact the set mark command uses the
same input code layer as the plot command. It can even have an associated title to identify it. For more detail
on how this works, see set mark (p. 225).

This example defines four marks. Each is a background-filled shape that can be used to supplement the shapes
available as default point types. Two of these marks are defined by arrays of coordinates. The other two are
defined parametrically.

FILLSTROKE = 3 # indicates the mark has both lines and fill properties
array Squafe = [{_17_1}/ { 11_1}1 { 1/ 1}! {_ll 1}/ {_17_1}1
array Triangle = [{0,1.2}, {1.04,-0.6}, {-1.04,-0.6}, {0,1.2}]

set mark 1 Square using 2:3: (FILLSTROKE) fc bgnd title "square"
set mark 2 Triangle using 2:3: (FILLSTROKE) fc bgnd title "triangle"
set angle degrees

set mark 3 [0:360:10] '+' using (sin($1)):(cos($1)): (FILLSTROKE) \
title "circle" fc bgnd
set mark 4 [0:360:72] '+' using (sin($1)):(cos($1)): (FILLSTROKE) \

title "pentagon" fc bgnd
unset angle

Just as you could use the existing default point types in
a plot request "with linespoints pt N", you can now use
the new custom shapes in a plot request "with linesmarks
marktype N". Although not shown here, it is also possi-
ble to request marktype variable if the choice of shape
is determined by an additional column of input data. The
demo collection contains an expanded version of this ex-
ample in extra_points.dem

Custom point shapes defined as marks

set title "Custom point shapes defined as marks"
plot for [M=1:4] -sin(x/M) with linesmarks marktype M

http://www.gnuplot.info/demo/extra_points.html

72 gnuplot 6.1

Example: scatterplots

The previous example illustrated use of background-filled marks where the mark polygon inherits the color of
the line it is part of. This example shows how the fill color and border color of such a mark can be varied
separately. Note that

* Mark coordinates can be provided in either an array, a datablock, or a file (not shown).

 Data can be transformed by the using specifier in the set mark command. In this example mark 3 is an
upside-down mark 2.

* Further transformation can be applied in the plot command. In this example marks are scaled by point-
size.

The data plotted in these examples is taken from iris.dem

For simplicity, data preprocessing to generate separate datablocks $setosa, $versicolor, $virginicana is not
shown here.

array Square = [{-0.5,-0.5}, { 0.5,-0.5}, { 0.5, 0.5}, {-0.5, 0.5}, {-0.5,-0.5}]
$Triangle << EOD
0 0.5
0.433013 -0.25
-0.433013 -0.25
0 0.5
EOD

set mark 1 Square using 2:3
set mark 2 $Triangle using 1:2
set mark 3 $Triangle using 1: (-$2)

The first plot shows that if no fillstyle is provided in either
the mark definition or the plot command, it is inherited
from the global properties in set style fill. If no fillcolor
is provided, it follows the default sequence of plot colors.

setosa
versicolor
virginica

L
>

Petal Length
O = N W R N o
L

set object 1 rectangle from graph 0,0 to graph 1,115 2 25 3 35 4 45 5
set object 1 fillstyle solid fc "gray" behind Sepal Width

set title "White outline with solid color fill"
set style fill solid border lc 'white'

plot $setosa with marks mt 1 ps 1.5 title "setosa", \
Sversicolor with marks mt 2 ps 2 title "versicolor", \
Svirginica with marks mt 3 ps 2 title "virginica"

http://www.gnuplot.info/demo/iris.html

gnuplot 6.1

73

The second plot provides both a fillcolor and a stroke
color in the plot command. The key entries then need
a different fill color.

set style fill solid

plot S$setosa with marks mt 1 ps 1.5 1lw 2
fc "gray" fs border 1lc

Sversicolor with marks mt 2 ps 2 1w 2

fc "gray" fs border 1lc

$virginica with marks mt 3 ps 2 1w 2

fc "gray" fs border 1lc

keyentry with marks mt 1 ps 1.5 1w 2

8_
7_
6
=
g 51
Q
3 4
=
ERS
2_
l_
nOtiQC'Lelz 2I5 I3 3I5 ;1 4I5 Is
rpLeTTha A D 30 4
i Sepal Width
notitle \
"#££7£0e’, \
notitle \
"#2cal2c', \
\

fc bgnd fs border lc '"#1£f77b4' \

title "setosa", \
keyentry with marks mt 2 ps 2 1w 2

\

fc bgnd fs border lc '#ff7f0e' \

title "versicolor", \
keyentry with marks mt 3 ps 2 1w 2

\

fc bgnd fs border lc '#2ca02c' \

title "virginica"

a
A

v

setosa
versicolor
virginica

74

gnuplot 6.1

Example: annotation

The fact that marks are deformable means that a single mark definition can be used as a template to draw
appropriately scaled marks as mark-up elements to annotate plot ranges or groups of plot elements. This
example show definition of a single mark that will be positioned and stretched horizontally to highlight and
label selected groups within a bar chart. This example is a simplified version of mark_grouping.dem

In the full demo the left-most x value and horizontal extent for each group are calculated from an input data
set. Here we assume these values have been pre-calculated and stored in $markup.

It is convenient to dissociate the annotation markup from the specific yrange of the data by plotting the marks
and labels against the y2 axis rather than against the y axis. This is not necessary, however. An alternative
would be to plot the marks against the y axis but add the keywords "noclip noautoscale" so that the marks
neither contribute to the y axis range nor are they clipped against it.

$Group_mark << EOD

x vy

0 -0.5

0 O

1 0

1 -0.5
0.5 0.0
0.5 0.5
EOD

l=stroke
1

= e e

= e

set mark 1 $Group_mark

Smarkup << EOD

label
"Group 1"
"Group 2"
"Group 3"
"Group 4"
EOD

TOP = 9

width
4

3
4
2

y value of the grouping marks

set link y2
set ytics nomirror rangelimited
set border 3

plot S$bar_data using

left_edge
1
6
10
15

Smarkup using ($3-0.5): (TOP) :2: (1)

1 1w 1, \

Smarkup using ($3-0.5+$2/2):(TOP):1

Group 1 Group 2 Group 3 Group 4

1 1 1 1
[1 [1 [1 [1

ailld s i

A B CD E F G H 1T J K L M

O =W WO o

($04$3):2:(0.8) :3:xtic (1) with boxes lc variable, \

axes x1y2 with marks mt 1 units xy 1lt -

axes x1ly2 with labels center offset 0,1.7

A complementary example of using a vertically displaced and stretched mark for annotation is given in
mark_labels.dem

http://www.gnuplot.info/demo/mark_grouping.html
http://www.gnuplot.info/demo/mark_labels.html

gnuplot 6.1 75

Example: windbarbs

This example shows how the 5-column form of " plot with r f r

marks" can be used to control the position, scale, and ro- 5 knots 25knots 50 knots

tation of marks. Each barb is made up of several line \ Va
segments. Some also contain a solid-fill triangular flag. e J ™
Coordinates in the range [0:1] are provided in data blocks { 4 I

(see marks data (p. 70)). The plot command then ap- S <7
plies a uniform scale and variable rotation.

The three windbarb marks shown here are extracted from
the full set used by windbarbs.dem

#

Windbarbs representing 5, 25, and 50 knot wind speed

rotated and uniformly scaled by the 5-column form of the plot command
plot with marks using x:y:scale:scale:angle units gxx

SMARK_5 <<EOM

0 0 1
0 1 1
0 0.870 1
0.235 0.956 1
EOM

SMARK_25 <<EOM

0 0 1
0 1 1
0 1 1
0.470 1.171 1
0 0.870 1
0.470 1.041 1
0 0.740 1
0.235 0.826 1
EOM

SMARK_50 <<EOM

0 0 1
0 1.100 1
0 0.900 3
0.470 1.071 3
0 1.100 3
0 0.900 3
EOM

set mark 5 $SMARK_5 title " 5 knots" fill solid
set mark 25 SMARK_25 title "25 knots" fill solid
set mark 50 S$SMARK_50 title "50 knots" fill solid

unset border; unset tics

set key horizontal reverse Left samplen 1 height 3
set xrange [0:10]

set yrange [0:8]

http://www.gnuplot.info/demo/windbarbs.html

76

gnuplot 6.1

2] 4!
2] '+
[t=1:9:2] '"+'
keyentry with
keyentry with
keyentry with

using
using
using
marks
marks
marks

(t):(6):(SIZE): (SIZE)
(t):(4):(SIZE) : (SIZE)
(t) : (2):

mt 5 ps 4 1lc "black"
mt 25 ps 4 1lc "black"
mt 50 ps 4 1lc "black"

(SIZE) : (SIZE) :

barb size will be 5% of graph width

: (36*t)
: (15*t)
(25*t)
title
title
title

(units gxx)

notitle with marks mt 5 units gxx,
notitle with marks mt 25 units gxx,
notitle with marks mt 50 units gxx,

"5 knots",
"25 knots",
"50 knots"

\

\

\

\
\

gnuplot 6.1 77

Example: parametric marks

Syntax:

set mark <tag> [start:end:increment] '+' using (£($1)):(g(s$1))

The syntax for the set mark command follows that of

. . Mark shapes defined by parametric formulas
a plot command. Thus as an alternative to reading x/y

coordinates from a file, array, or data block, a mark can b2 3 45 6 789

be defined by a pair of parametric equations operating on O A ¢ O ©0 9 & %

a sampled implicit variable indicated by the pseudofile ® A ¢ O 0O 9 & % ©

’+°. See special_filenames (p. 166). O A O O 0 9 &6 * O

This example defines a set of parametric marks and shows ® A ¢ ® ¢ VYV & x =

how they can be combined with stroke and fill styles to @ A ¢ o © YV & & ®»

produce a family of plot symbols. This example is a sub-

set of mark_formulas.dem
set angle degrees
set mark 1 [t=0:360:10] '+' using (sin(t)): (cos(t)) ### circle
set mark 2 [t=0:360:120] '+' using (sin(t)): (cos(t)) ### triangle
set mark 3 [t=0:360:90] '+' using (sin(t)): (cos(t)) ### diamond
set mark 4 [t=0:360:72] '+' using (sin(t)): (cos(t)) ### pentagon
set mark 5 [t=0:360:60] '+' using (sin(t)): (cos(t)) ### hexagon
set mark 6 [t=0:360:10] '+' using (cos(t)): (0.8* (sqrt (abs(cos(t)))+sin(t))) ### heart
set mark 7 [t=0:360:10] '+' using (r=0.5%*abs(cos(3/2.0*t))+0.5, r*sin(t)):(r*cos(t)) ### 3 peta
set mark 8 [t=0:360:72/2] '+' using (r=0.4* (cos(5*t)+2), r*sin(t)): (r*cos(t)) ### star
set mark 9 [t=0:360:72/20] '+' using (r=0.18* (cos(5*t)+5), r*sin(t)): (r*cos(t)) ### 5 peta
unset angle

array dummy[1]

S = 1.25 # scale factor

plot \
for [k=1:9] dummy using (k) :(11): (sprintf("%$i",k)) with labels center, \
for [k=1:9] dummy using (k):(9) with marks mt k ps S fill solid 0.5 border lc 'black', \
for [k=1:9] dummy using (k) :(7) with marks mt k ps S fill solid (1./k) fc 'black', \
for [k=1:9] dummy using (k):(5) with marks mt k ps S fill solid 0.0 border lc 'black', \
for [k=1:9] dummy using (k):(3) with marks mt k ps S fill solid 1.0 noborder fc 'red', \
for [k=1:9] dummy using (k) : (1) with marks mt k ps S f£ill solid 1.0 border lc 'blue'

http://www.gnuplot.info/demo/mark_formulas.html

78 gnuplot 6.1

Mouse input

Many terminals allow interaction with the current plot using the mouse. Some also support the definition of
hotkeys to activate pre-defined functions by hitting a single key while the mouse focus is in the active plot
window. It is even possible to combine mouse input with batch command scripts, by invoking the command
pause mouse and then using the mouse variables returned by mouse clicking as parameters for subsequent
scripted actions. See bind (p. 78) and mouse variables (p. 79). See also the command set mouse (p. 227).

Bind

Syntax:

bind {allwindows} [<key-sequence>] ["<gnuplot commands>"]
bind <key-sequence> ""
reset bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gnuplot commands which will be executed
when a certain key or key sequence is pressed while the driver’s window has the input focus. Note that bind
is only available if gnuplot was compiled with mouse support and it is used by all mouse-capable terminals.
A user-specified binding supersedes any builtin bindings, except that <space> and ’q’ cannot normally be
rebound. For an exception, see bind space (p. 79).

Mouse button bindings are only active in 2D plots.

You get the list of all hotkeys by typing show bind or bind or by typing the hotkey ’h’ in the graph window.
Key bindings are restored to their default state by reset bind.

Note that multikey-bindings with modifiers must be given in quotes.

Normally hotkeys are only recognized when the currently active plot window has focus. bind allwindows
<key> ... (short form: bind all <key>> ...) causes the binding for <key> to apply to all gnuplot plot windows,
active or not. In this case gnuplot variable MOUSE_KEY_WINDOW is set to the ID of the originating window,
and may be used by the bound command.

Examples:
- set bindings:

bind a "replot"

bind "ctrl-a" "plot x*x"

bind "ctrl-alt-a" 'print "great"'

bind Home "set view 60,30; replot"

bind all Home 'print "This is window ",MOUSE_KEY_WINDOW'

- show bindings:

bind "ctrl-a" # shows the binding for ctrl-a
bind # shows all bindings
show bind # show all bindings

- remove bindings:

bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a
(note that builtins cannot be removed)
reset bind # installs default (builtin) bindings

- bind a key to toggle something:

gnuplot 6.1 79

v=0
bind "ctrl-r" "v=v+1l;if (v%2)set term x11 noraise; else set term x11 raise"

Modifiers (ctrl / alt) are case insensitive, keys not:

ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt, shift (only valid for Buttonl Button2 Button3)

List of supported special keys:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", "Home", llLeftll, "Up", "Rightll, "DOWH",
"PageUp", "PageDown", "End", "Begin",

"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",

"KP_Divide",

"KP_]." _ "KP_9", "EqQ" — "Eq2M

The following are window events rather than actual keys
"Buttonl" "Button2" "Button3" "Close"

See also help for mouse (p. 227).

Bind space

If gnuplot was built with configuration option —enable-raise-console, then typing <space> in the plot window
raises gnuplot’s command window. Maybe. In practice this is highly system-dependent. This hotkey can be
changed to ctrl-space by starting gnuplot as "gnuplot -ctrlq’, or by setting the XResource *gnuplot*ctrlq’.

Mouse variables

When mousing is active, clicking in the active window will set several user variables that can be accessed from
the gnuplot command line. The coordinates of the mouse at the time of the click are stored in MOUSE_X
MOUSE_Y MOUSE_X2 and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time,
are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL. These variables are
set to undefined at the start of every plot, and only become defined in the event of a mouse click in the active
plot window. To determine from a script if the mouse has been clicked in the active plot window, it is sufficient
to test for any one of these variables being defined.

plot 'something'

pause mouse

if (exists ("MOUSE_BUTTON")) call 'something_else'; \
else print "No mouse click."

It is also possible to track keystrokes in the plot window using the mousing code.

plot 'something'
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y

80 gnuplot 6.1

When pause mouse keypress is terminated by a keypress, then MOUSE_KEY will contain the ascii character
value of the key that was pressed. MOUSE_CHAR will contain the character itself as a string variable. If
the pause command is terminated abnormally (e.g. by ctrl-C or by externally closing the plot window) then
MOUSE_KEY will equal -1.

Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN, GPVAL_X_MAX,
GPVAL_Y_MIN, and GPVAL_Y_MAX, see gnuplot-defined variables (p. 58).

Persist

Many gnuplot terminals (aqua, pm, qt, x11, windows, wxt, ...) open separate display windows on the screen into
which plots are drawn. The persist option tells gnuplot to leave these windows open when the main program
exits. It has no effect on non-interactive terminal output. For example if you issue the command

gnuplot -persist -e 'plot sinh(x)'

gnuplot will open a display window, draw the plot into it, and then exit, leaving the display window containing
the plot on the screen. You can also specify persist or nopersist when you set a new terminal.
set term gt persist size 700,500

Depending on the terminal type, some mousing operations may still be possible in the persistent window.
However operations like zoom/unzoom that require redrawing the plot are not possible because the main pro-
gram has exited. If you want to leave a plot window open and fully mouseable after creating the plot, for
example when running gnuplot from a script file rather than interactively, see pause mouse close (p. 148).

Plotting

There are four gnuplot commands which actually create a plot: plot, splot, replot, and refresh. Other com-
mands control the layout, style, and content of the plot that will eventually be created. plot generates 2D plots.
splot generates 3D plots (actually 2D projections, of course). replot reexecutes the previous plot or splot
command. refresh is similar to replot but it reuses any previously stored data rather than rereading data from
a file or input stream.

Each time you issue one of these four commands it will redraw the screen or generate a new page of output
containing all of the currently defined axes, labels, titles, and all of the various functions or data sources listed
in the original plot command. If instead you need to place several complete plots next to each other on the
same page, e.g. to make a panel of sub-figures or to inset a small plot inside a larger plot, use the command set
multiplot to suppress generation of a new page for each plot command.

Much of the general information about plotting can be found in the discussion of plot; information specific to
3D can be found in the splot section.

plot operates in either rectangular or polar coordinates — see set polar (p. 254). splot operates in Cartesian
coordinates, but will accept azimuthal or cylindrical coordinates on input. See set mapping (p. 224). plot
also lets you use each of the four borders — x (bottom), x2 (top), y (left) and y2 (right) — as an independent
axis. The axes option lets you choose which pair of axes a given function or data set is plotted against. A full
complement of set commands exists to give you complete control over the scales and labeling of each axis.
Some commands have the name of an axis built into their names, such as set xlabel. Other commands have
one or more axis names as options, such as set logscale xy. Commands and options controlling the z axis have
no effect on 2D graphs.

gnuplot 6.1 81

splot can plot surfaces and contours in addition to points and/or lines. See set isosamples (p. 212) for infor-
mation about defining the grid for a 3D function. See splot datafile (p. 294) for information about the requisite
file structure for 3D data. For contours see set contour (p. 195), set cntrlabel (p. 191), and set cntrparam
(p. 191).

In splot, control over the scales and labels of the axes are the same as with plot except that there is also a z axis
and labeling the x2 and y2 axes is possible only for pseudo-2D plots created using set view map.

Plugins

The set of functions available for plotting or for evaluating expressions can be extended through a plugin mech-
anism that imports executable functions from a shared library. For example, gnuplot versions through 5.4 did
not provide a built-in implementation of the upper incomplete gamma function Q(a,x).

Qa,z) = ﬁ e toletat . You could define an approximation directly in gnuplot like this:

Q(a,x) = 1. - igamma (a,x)

However this has inherently limited precision as igamma(a,x) approaches 1. If you need a more accurate
implementation, it would be better to provide one via a plugin (see below). Once imported, the function can
be used just as any other built-in or user-defined function in gnuplot. See import (p. 145).

The gnuplot distribution includes source code and instructions for creating a plugin library in the directory
demo/plugin. You can modify the simple example file demo_plugin.c by replacing one or more of the toy
example functions with an implementation of the function you are interested in. This could include invocation
of functions from an external mathematical library.

The demo/plugin directory also contains source for a plugin that implements Q(a,x). As noted above, this
plugin allows earlier versions of gnuplot to provide the same function uigamma as version 6.

import Q(a,x) from "uigamma_plugin"
uigamma (a,x) = ((x<1 || x<a) ? 1.0-igamma(a,x) : Q(a,x))

Scope of variables

Gnuplot variables are global except in the special cases listed below. There is a single persistent list of active
variables indexed by name. Assignment to a variable creates or replaces an entry in that list. The only way to
remove a variable from that list is the undefine command.

Exception 1: The scope of the variable used in an iteration specifier is private to that iteration. You cannot
permanently change the value of the iteration variable inside the iterated clause. If the iteration variable has
a value prior to iteration, that value will be retained or restored at the end of the iteration. For example, the
following commands will print 1234567 89 10 A.

i = "a"

do for [i=1:10] { print i; i=10; }

print i

Exception 2: The parameter names used in defining a function are only placeholders for the actual values that
will be provided when the function is called. For example, any current or future values of x and y are not
relevant to the definition shown here, but A must exist as a global variable when the function is later evaluated:

func(x,y) = A + (x+y)/2.

82 gnuplot 6.1

Exception 3: Variables declared with the local command. The local qualifier (new in version 6) allows optional
declaration of a variable or array whose scope is limited to the execution of the code block in which it is found.
This includes load and call operations, evaluation of a function block, and the code in curly brackets that follows
an if, else, do for, or while condition. If the name of a local variable duplicates the name of a global variable,
the global variable is shadowed until exit from the local scope.

Start-up (initialization)

When gnuplot is run, it first looks for a system-wide initialization file gnuplotrc. The location of this file is
determined when the program is built and is reported by show loadpath. The program then looks in the user’s
HOME directory for a file called .gnuplot on Unix-like systems or GNUPLOT.INI on other systems. (OS/2
will look for it in the directory named in the environment variable GNUPLOT; Windows will use APPDATA).
On Unix-like systems gnuplot additionally checks for the file $XDG_CONFIG_HOME/gnuplot/gnuplotrc.

String constants, string variables, and string functions

In addition to string constants, most gnuplot commands also accept a string variable, a string expression, or a
function that returns a string. For example, the following four methods of creating a plot all result in the same
plot title:

four = "4"
graph4 = "Title for plot #4"
graph (n) = sprintf ("Title for plot #%d",n)

plot 'data.4' title "Title for plot #4"
plot 'data.4' title graph4

plot 'data.4' title "Title for plot #".four
plot 'data.4' title graph(4)

Since integers are promoted to strings when operated on by the string concatenation operator (. character),
the following method also works:

N = 4
plot 'data.'.N title "Title for plot #".N

In general, elements on the command line will only be evaluated as possible string variables if they are not
otherwise recognizable as part of the normal gnuplot syntax. So the following sequence of commands is legal,
although probably should be avoided so as not to cause confusion:

plot = "my_datafile.dat"

title = "My Title"
plot plot title title

Substrings

Substrings can be specified by appending a range specifier to any string, string variable, or string-valued func-
tion. The range specifier has the form [begin:end], where begin is the index of the first character of the substring
and end is the index of the last character of the substring. The first character has index 1. The begin or end
fields may be empty, or contain **’, to indicate the true start or end of the original string. Thus str[:] and str[*:¥]
both describe the full string str. Example:

gnuplot 6.1 83

eos = strlen(file)

if (file[eos-3:*] eq ".dat") {
set output file[l:eos—-4] . ".png"
plot file

}

There is also an equivalent function substr(string, begin, end).

String operators

Three binary operators require string operands: the string concatenation operator ".", the string equality op-
erator "eq" and the string inequality operator "ne". The following example will print TRUE.

if (IIA"'IIBII eq "AB") print "TRUE"

String functions

Gnuplot provides several built-in functions that operate on strings. General formatting functions: see gprintf
(p. 46) sprintf (p. 46). Time formatting functions: see strftime (p. 46) strptime (p. 46). String manipulation:
see split (p. 54), substr (p. 46) strstrt (p. 46) trim (p. 55) word (p. 54) words (p. 54).

String encoding

Gnuplot’s built-in string manipulation functions are sensitive to utf-8 encoding (see set encoding (p. 202)).
For example

set encoding utfs8

utf8string = "apy"

strlen(utf8string) returns 3 (number of characters, not number of bytes)

utf8string(2:2] evaluates to "B"
strstrt (utf8string, "B") evaluates to 2

Substitution and Command line macros

When a command line to gnuplot is first read, i.e. before it is interpreted or executed, two forms of lexical
substitution are performed. These are triggered by the presence of text in backquotes (ascii character 96) or
preceded by @ (ascii character 64).

Substitution of system commands in backquotes

Command-line substitution is specified by a system command enclosed in backquotes. This command is
spawned and the output it produces replaces the backquoted text on the command line. Exit status of the
system command is returned in variables GPVAL_SYSTEM_ERRNO and GPVAL_SYSTEM_ERRMSG.

Note: Internal carriage-return ("\r’) and newline ("\n’) characters are not stripped from the substituted string.

Command-line substitution can be used anywhere on the gnuplot command line except inside strings delimited
by single quotes.

For example, these will generate labels with the current time and userid:

84 gnuplot 6.1

set label "generated on “date +%Y-%m-%d’ by “whoami™" at 1,1
set timestamp "generated on %Y-%m-%d by ~whoami'"

This creates an array containing the names of files in the current directory:
FILES = split("'1s -1°")

Substitution of string variables as macros

The character @ is used to trigger substitution of the current value of a string variable into the command line.
The text in the string variable may contain any number of lexical elements. This allows string variables to be
used as command line macros. Only string constants may be expanded using this mechanism, not string-valued
expressions. For example:

stylel = "lines 1t 4 1w 2"
style2 = "points 1t 3 pt 5 ps 2"
rangel = "using 1:3"

range2 = "using 1:5"

plot "foo" @rangel with @stylel, "bar" @range2 with @style2

The line containing @ symbols is expanded on input, so that by the time it is executed the effect is identical to
having typed in full

plot "foo" using 1:3 with lines 1t 4 1w 2, \
"bar" using 1:5 with points 1t 3 pt 5 ps 2

The function exists() may be useful in connection with macro evaluation. The following example checks that
C can safely be expanded as the name of a user-defined variable:

Cc = llpill
if (exists(C)) print C," =", @C

Macro expansion does not occur inside either single or double quotes. However macro expansion does occur
inside backquotes.

Macro expansion is handled as the very first thing the interpreter does when looking at a new line of commands
and is only done once. Therefore, code like the following will execute correctly:

A = "g=1"
@A

but this line will not, since the macro is defined on the same line and will not be expanded in time

A = "c=1"; @A # will not expand to c=1
Macro expansion inside a bracketed iteration occurs before the loop is executed; i.e. @A will always act as the
original value of A even if A itself is reassigned inside the loop.

For execution of complete commands the evaluate command may also be handy.

String variables, macros, and command line substitution

The interaction of string variables, backquotes and macro substitution is somewhat complicated. Backquotes
do not block macro substitution, so

filename = "mydata.inp"
lines = ° wc —-lines @filename | sed "s/ .*//"

gnuplot 6.1 85

results in the number of lines in mydata.inp being stored in the integer variable lines. And double quotes do
not block backquote substitution, so

mycomputer = "“uname -n "

results in the string returned by the system command uname -n being stored in the string variable mycomputer.

However, macro substitution is not performed inside double quotes, so you cannot define a system command
as a macro and then use both macro and backquote substitution at the same time.

machine_id = "uname -n"
mycomputer = " @machine_id " # doesn't work!!

This fails because the double quotes prevent @machine_id from being interpreted as a macro. To store a system
command as a macro and execute it later you must instead include the backquotes as part of the macro itself.
This is accomplished by defining the macro as shown below. Notice that the sprintf format nests all three types
of quotes.

machine_id = sprintf ('" uname -n"""')
mycomputer = @machine_id
Syntax

Options and any accompanying parameters are separated by spaces whereas lists and coordinates are separated
by commas. Ranges are separated by colons and enclosed in brackets [], text and file names are enclosed in
quotes, and a few miscellaneous things are enclosed in parentheses.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of variables
being fitted (the list after the via keyword on the fit command); lists of discrete contours or the loop parameters
which specify them on the set cntrparam command; the arguments of the set commands dgrid3d, dummy,
isosamples, offsets, origin, samples, size, time, and view; lists of tics or the loop parameters which specify
them; the offsets for titles and axis labels; parametric functions to be used to calculate the x, y, and z coordinates
on the plot, replot and splot commands; and the complete sets of keywords specifying individual plots (data
sets or functions) on the plot, replot and splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate computations
in using specifiers of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)
Square brackets are used to delimit ranges given in set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot or splot
commands) and to separate entries in the using specifier of the plot, replot, splot and fit commands.

Semicolons are used to separate commands given on a single command line.

Curly braces are used in the syntax for enhanced text mode and to delimit blocks in if/then/else statements.
They are also used to denote complex numbers: {3,2} =3 + 2i.

Quote marks

Gnuplot uses three forms of quote marks for delimiting text strings, double-quote (ascii 34), single-quote (ascii
39), and backquote (ascii 96).

86 gnuplot 6.1

File names may be entered in either single or double quotes. String constants and text strings used for labels,
titles, or other plot elements may be enclosed in either single quotes or double quotes. Further processing of
the quoted text depends on the choice of quote marks.

Single and double quoted strings differ as follows

* Backslash processing of special characters \n (newline) \r (return) and \t (tab) is performed only for
double-quoted strings.

* In single-quoted strings, backslashes are just ordinary characters. To get a single-quote in a single-quoted
string, it must be doubled. Thus the strings "d\" s’ b\\ " and ’d" s’ b\’ are completely equivalent.

* Unicode escape sequences \U+xxxx are processed for both single-quoted and double-quoted strings.
* Enhanced text processing can be used for both double-quoted text and single-quoted text.

¢ Octal escape sequences \00o are processed in single-quoted strings only if enhanced text is enabled.
Octal escapes are always process in double-quoted strings.

Back-quotes are used to enclose system commands for substitution into the command line. See substitution
(p. 83).

Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by the com-
mands set xdata time, set ydata time, etc.

Internally all times and dates are converted to the number of seconds from the year 1970. The command set
timefmt defines the default format for all inputs: data files, ranges, tics, label positions — anything that accepts
a time data value defaults to receiving it in this format. Only one default format can be in effect at a given time.
Thus if both x and y data in a file are time/date, by default they are interpreted in the same format. However
this default can be replaced when reading any particular file or column of input using the timecolumn function
in the corresponding using specifier.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard Time).
There is no provision for changing the time zone or for daylight savings. If all your data refer to the same time
zone (and are all either daylight or standard) you don’t need to worry about these things. But if the absolute
time is crucial for your application, you’ll need to convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change timefmt, and
then show the quantity again, it will be displayed in the new timefmt. For that matter, if you reset the data
type flag for that axis (e.g. set xdata), the quantity will be shown in its numerical form.

The commands set format or set tics format define the format that will be used for tic labels, whether or not
input for the specified axis is time/date.

If time/date information is to be plotted from a file, the using option must be used on the plot or splot command.
These commands simply use white space to separate columns, but white space may be embedded within the
time/date string. If you use tabs as a separator, some trial-and-error may be necessary to discover how your
system treats them.

The time function can be used to get the current system time. This value can be converted to a date string with
the strftime function, or it can be used in conjunction with timecolumn to generate relative time/date plots.
The type of the argument determines what is returned. If the argument is an integer, time returns the current

gnuplot 6.1 87

time as an integer, in seconds from 1 Jan 1970. If the argument is real (or complex), the result is real as well.
The precision of the fractional (sub-second) part depends on your operating system. If the argument is a string,
it is assumed to be a format string, and it is passed to strftime to provide a formatted time/date string.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like
03/21/95 10:00 6.02e23

This file can be plotted by
set xdata time
set timefmt "%m/%d/Sy"
set xrange ["03/21/95":"03/22/95"]
set format x "$m/%d"
set timefmt "%m/%d/%y %H:s$M"
plot "data" using 1:3

which will produce xtic labels that look like "03/21".

Gnuplot tracks time to millisecond precision. Time formats have been modified to match this. Example: print
the current time to msec precision

print strftime("%$H:%M:%.3S %d-%b-%Y",time (0.0))

18:15:04.253 16-Apr-2011

See time_specifiers (p. 207), set xtics time (p. 285), set mxtics time (p. 232).

Watchpoints

Support for watchpoints is present only if your copy of gnuplot was built with configuration option —enable-
watchpoints. This feature is EXPERIMENTAL [details may change in subsequent versions].

Syntax:
plot FOO watch {x|yl|z|F(...)} = <value> {label <string-valued function>}
plot FOO watch mouse

set style watchpoints nolabels
set style watchpoints label <label-properties>

unset style watchpoints # return to default style

show watchpoints # summarizes all watches from previous plot command

A watchpoint is a target value for the X, y, or z coordinate or for a function f(a,...). Each watchpoint is attached
to a single plot within a plot or splot command. Every component line segment of that plot is checked against
all watchpoints attached the plot to see whether one or more of the watchpoint targets is satisfied at a point
along that line segment. A list of points that satisfy the the target condition ("hits") is accumulated as the plot
is drawn.

For example, if there is a watchpoint with a target y=100, each line segment is checked to see if the y coordinates
of the two endpoints bracket the target y value. If so then some point [X,y] on the line segment satisfies the
target condition y = 100 exactly. This target point is then found by linear interpolation or by iterative bisection.

Watchpoints within a single plot command are numbered successively. More than one watchpoint per plot
component may be specified. Example:
plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 watch y=0.75

Watchpoints are tracked only for plot styles with lines and with linespoints. Watchpoints are also possible
for splot with lines in 2D xy projection (set view map).

88 gnuplot 6.1

Watchpoint hits for each target in the previous plot com-
mand are stored in named arrays WATCH_n. You can
also display a summary of all watchpoint hits from the
previous plot command; see show watchpoints (p. 277).

Find quartile values on a ROC curve

1.00

1 0.75

gnuplot> show watchpoints 1050

Plot title: "DATA using 1:2 smooth cnormal"
Watch 1 target y = 0.25 (1 hits) 1025
hit 1 x 49.7 y 0.25
Watch 2 target y = 0.5 (1 hits)) 0.00
hit 1 x 63.1 vy 0.5 0 20 40 60 80 100 120
Watch 3 target y = 0.75 (1 hits)

hit 1 x 67.8 vy 0.75

Smoothing: Line segments are checked as they are drawn. For unsmoothed data plots this means a hit found
by interpolation will lie exactly on a line segment connecting two data points. If a data plot is smoothed, hits
will lie on a line segment from the smoothed curve. Depending on the quality of the smoothed fit, this may or
may not be more accurate than the hit from the unsmoothed data.

Accuracy: If the line segment was generated from a function plot, the exact value of x such that f(x) =y is
found by iterative bisection. Otherwise the coordinates [X,y] are approximated by linear interpolation along the
line segment.

Watch labels

By default, labels are always generated for the target "watch mouse". You can turn labels on for other watch
targets using the command set style watchpoint labels or by specifying a label as part of the watchpoint target
in a plot command.

The default label text is "x : y", where x and y are the coordinates of the point, formatted using the current
settings for the corresponding axes.

Example:

set y2tics format "%.2f°"
set style watchpoint labels point pt 6
plot FOO axes xly2 watch mouse

You can provide a customized label for each watch target, either as a string constant or via function that returns
a string.

Examples:

set style data lines

plot FOO watch y=50 label "50" watch y=100 label "100"

f(x,y) = 2*x - vy # f(x,y) = 0 defines a sloping line

plot $CONTOURS using 1:2:3 watch f(x,y) = 0 label sprintf ("%$.2f",z)

Each watchpoint label is placed in a textbox. See set style textbox (p. 266).

Watchpoint function target

A watchpoint can be set for the target value of a function. The function is evaluated at the beginning and end of
each line segment in the plot. If the endpoint values span the target value, the [X,y] hit coordinates are reported
after linear interpolation.

plot FOO watch func(...)=targetvalue

gnuplot 6.1 89

The trivial example below sets a watchpoint target that will place a label where the curve crosses the line y
= ax + b. When evaluated at [X,y] the function Line() returns the deviation of the current y coordinate from
the value ax + b. Thus when evaluated at an intersection of the plotted curve with the line ax+b, the function
returns zero. We set this as the watch target.

Line(x,y) = (a*x + b) -y
plot cos(x) watch Line(x,y)=0, a*x + b

During evaluation the corresponding values of X, y, and z at that point are available to the function whether or
not they are named parameters. So the variant below achieves the same result as the previous example.

Line (dummyl, dummy2) = dummyl*x + dummy2 - y
plot cos(x) watch Line(a,b)=0, a*x + b

The same again, using a function block instead of an in-line function.

function $Line() << EOF
return (a*x + b) -y
EOF
plot cos(x) watch $Line()=0, a*x + b

A more interesting use is to constrain the placement of
contour labels on a contour plot. Gnuplot has several op-
tions to modify the automatic placement of contour labels
see set cntrlabel (p. 191)) but these may not be satisfac-
tory for labelling crowded plots. You can instead place
labels only at positions where a watchpoint function tar-
get is satisfied.

Here is an example where a straight line across the area T o 0.0 10 20
of the plot is chosen and contour labels are placed only
where a contour crosses one that line. For the complete worked example see demo watch_contours.dem.

set style watchpoint labels center nopoint font ",9"
set style textbox noborder opaque margins 0.5, 0.5
line(a,b) = a*x+b - vy

a=20.6; b =20.5

set contours
set cntrparam levels incr 0, .2, 4
set view map

splot f(x,y) with lines nosurface watch line(a,b)=0 label sprintf("$.1£f", z)

Each label is generated using the z value of that contour. The default watchpoint labels " x : y " would not be
useful for this plot so we provide a formatting function that prints the z value of the contour.

Watch mouse

Using the current mouse x coordinate as a watch target generates a label that moves along the line of the plot
tracking the horizontal position of the mouse. This allows simultaneous readout of the y values of multiple plot
lines in the same graph. The appearance of the point indicating the current position and of the label can be
modified by set style watchpoint and set style textbox

Example:
set style watchpoint labels point pt 6 ps 2 boxstyle 1
set style textbox 1 1lw 0.5 opaque
plot for [i=1:N] "file.dat" using 1:(column(i)) watch mouse

90 gnuplot 6.1

Part 11

Plotting styles

Many plotting styles are available in gnuplot. They are listed alphabetically below. The commands set style
data and set style function change the default plotting style for subsequent plot and splot commands.

You can also specify the plot style explicitly as part of the plot or splot command. If you want to mix plot
styles within a single plot, you must specify the plot style for each component.

Example:

plot 'data' with boxes, sin(x) with lines

Each plot style has its own expected set of data entries in a data file. For example, by default the lines style
expects either a single column of y values (with implicit x ordering) or a pair of columns with x in the first and
y in the second. For more information on how to fine-tune how columns in a file are interpreted as plot data,
see using (p. 167).

Arrows

The 2D arrows style draws an arrow with specified length and orientation angle at each point (x,y). Additional
input columns may be used to provide variable (per-datapoint) color information or arrow style. It is identical
to the 2D style with vectors except that each arrow head is positioned using length + angle rather than delta_x
+ delta_y. See with vectors (p. 122).

4 columns: x vy length angle

The keywords with arrows may be followed by inline arrow style properties, a reference to a predefined arrow
style, or arrowstyle variable to load the index of the desired arrow style for each arrow from a separate column.

length > 0 is interpreted in x-axis coordinates. -1 < length < 0 is interpreted in horizontal graph coordinates;
i.e. |length| is a fraction of the total graph width. The program will adjust for differences in x and y scaling or
plot aspect ratio so that the visual length is independent of the orientation angle.

angle is always specified in degrees.

Arrowstyle variable

For plot styles with arrows and with vectors, you can provide an extra column of input data that provides an
integer arrow style corresponding to style previously defined using set style arrow.

Example:

set style arrow 1 head nofilled linecolor "blue" linewidth 0.5
set style arrow 2 head filled linecolor "red" linewidth 1.0

column 5 is expected to co