
gnuplot 6.1
An Interactive Plotting Program

Thomas Williams & Colin Kelley

Version 6.1 organized by: Ethan A Merritt and many others

Major contributors (alphabetic order):
Christoph Bersch, Hans-Bernhard Bröker,
John Campbell, Robert Cunningham,
David Denholm, Gershon Elber,
Roger Fearick, Carsten Grammes,

Lucas Hart, Lars Hecking, Péter Juhász,
Thomas Koenig, David Kotz, Ed Kubaitis,

Russell Lang, Timothée Lecomte,
Alexander Lehmann, Jérôme Lodewyck,

Alexander Mai, Bastian Märkisch, Tatsuro Matsuoka,
Ethan A Merritt, Petr Mikulík, Hiroki Motoyoshi,
Daniel Sebald, Carsten Steger, Shigeharu Takeno,

Tom Tkacik, Jos Van der Woude,
James R. Van Zandt, Alex Woo, Johannes Zellner

Copyright © 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
Copyright © 2004 - 2025 various authors

Mailing list for comments: gnuplot-info@lists.sourceforge.net
Web site and issue trackers: http://sourceforge.net/projects/gnuplot

This manual was originally prepared by Dick Crawford.

Version 6.1 (development snapshot)

2 gnuplot 6.1 CONTENTS

Contents

I Gnuplot 25

Copyright 25

Introduction 25

Seeking-assistance / Bugs 26

New features in version 6 27

Function blocks and scoped variables . 27

Special and complex-valued functions . 28

New plot styles . 29

Hulls, masks, and smoothing . 29

Named palettes . 29

New data formats . 30

New built-in functions and array operations . 30

Program control flow . 30

Multiplots . 31

New terminals and terminal options . 31

Watchpoints . 32

Week-date time support . 32

Other new features . 32

Brief summary of features introduced in version 5 . 33

Features introduced in 5.4 . 33

Features introduced in 5.2 . 33

Features introduced in 5.0 . 34

Differences between versions 5 and 6 34

Deprecated syntax . 34

Development branch (version 6.1) 35

Demos and Online Examples 36

Batch/Interactive Operation 36

Command line options . 36

CONTENTS gnuplot 6.1 3

Examples . 36

Canvas size 37

Command-line-editing 37

Comments 38

Coordinates 38

Datastrings 39

Enhanced text mode 39

Escape sequences . 41

Environment 41

Expressions 42

Complex values . 42

Constants . 43

Functions . 44

Integer conversion functions (int floor ceil round) . 47

Elliptic integrals . 48

Complex Airy functions . 48

Complex Bessel functions . 48

Expint . 49

Fresnel integrals FresnelC(x) and FresnelS(x) . 49

Gamma . 49

Igamma . 49

Invigamma . 50

Ibeta . 50

Invibeta . 50

LambertW . 50

LnGamma . 50

Random number generator . 50

Special functions with complex arguments . 51

Synchrotron function . 51

Time functions . 51

4 gnuplot 6.1 CONTENTS

Time . 51

Timecolumn . 51

Tm_structure . 52

Tm_week . 52

Weekdate_iso . 52

Weekdate_cdc . 53

Uigamma . 53

Using specifier functions . 53

Column . 53

Columnhead . 53

Stringcolumn . 53

Valid . 54

Value . 54

Counting and extracting words . 54

Zeta . 55

Operators . 55

Unary . 55

Binary . 56

Ternary . 57

Summation and cumulative product . 57

Gnuplot-defined variables . 58

User-defined variables and functions . 58

Arrays . 59

Array functions . 60

Array indexing . 61

Fonts 61

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals) . 61

Gd (png, gif, jpeg, sixel terminals) . 61

Postscript (also encapsulated postscript *.eps) . 62

Glossary 62

Inline data and datablocks 63

Iteration 63

CONTENTS gnuplot 6.1 5

Linetypes, colors, and styles 64

Colorspec . 65

Background color . 66

Linecolor variable . 66

Palette . 66

Rgbcolor variable . 67

Dashtype . 67

Linestyles vs linetypes . 68

Special linetypes . 68

Layers 68

Marks 70

Mark data . 70

Marks examples . 71

Example: custom point shapes . 71

Example: scatterplots . 72

Example: annotation . 74

Example: windbarbs . 75

Example: parametric marks . 77

Mouse input 78

Bind . 78

Bind space . 79

Mouse variables . 79

Persist 80

Plotting 80

Plugins 81

Scope of variables 81

Start-up (initialization) 82

String constants, string variables, and string functions 82

Substrings . 82

String operators . 83

6 gnuplot 6.1 CONTENTS

String functions . 83

String encoding . 83

Substitution and Command line macros 83

Substitution of system commands in backquotes . 83

Substitution of string variables as macros . 84

String variables, macros, and command line substitution . 84

Syntax 85

Quote marks . 85

Time/Date data 86

Watchpoints 87

Watch labels . 88

Watchpoint function target . 88

Watch mouse . 89

II Plotting styles 90

Arrows 90

Arrowstyle variable . 90

Bee swarm plots 91

Boxerrorbars 91

Boxes 91

2D boxes . 92

3D boxes . 92

Boxplot 93

Boxxyerror 95

Candlesticks 95

Circles 96

Contourfill 97

CONTENTS gnuplot 6.1 7

Dots 98

Ellipses 99

Filledcurves 99

Above/below . 100

3D waterfall plots . 101

Fill properties . 101

Financebars 101

Fillsteps 101

Fsteps 102

Histeps 102

Heatmaps 103

Histograms 104

Newhistogram . 106

Automated iteration over multiple columns . 107

Histogram color assignments . 107

Hsteps 108

Offset . 109

Missing data . 110

Image 110

Transparency . 111

Image pixels . 111

Impulses 111

Labels 112

Lines 113

Linespoints 113

Marks 114

8 gnuplot 6.1 CONTENTS

Linesmarks 115

Masking 115

Parallelaxes 116

Polar plots 116

Points 117

Pointtype symbols . 117

Variable point properties . 118

Polygons 118

Rgbalpha 119

Rgbimage 119

Sectors 119

Spiderplot 120

Newspiderplot . 121

Steps 122

Surface 122

Vectors 122

Xerrorbars 123

Xyerrorbars 123

Xerrorlines 124

Xyerrorlines 124

Yerrorbars 125

Yerrorlines 125

3D plots 126

Surface plots . 126

CONTENTS gnuplot 6.1 9

2D projection (set view map) . 126

PM3D plots . 126

Fence plots 127

Isosurface 127

Zerrorfill 127

Animation 128

III Commands 129

Break 129

Cd 129

Call 129

ARGV[] . 130

Example . 130

Clear 131

Continue 131

Do 131

Evaluate 132

Exit 132

Fit 133

Adjustable parameters . 135

Short introduction . 135

Error estimates . 136

Statistical overview . 137

Practical guidelines . 138

Control . 139

Error recovery . 139

Multi-branch . 139

10 gnuplot 6.1 CONTENTS

Starting values . 140

Time data . 140

Tips . 140

Function blocks 142

Help 144

History 144

If 144

For 145

Import 145

Load 146

Local 146

Lower 147

Pause 147

Pause mouse close . 148

Pseudo-mousing during pause . 148

Plot 148

Axes . 149

Binary . 149

General . 150

Array . 150

Record . 151

Skip . 151

Format . 151

Blank . 151

Endian . 152

Filetype . 152

Avs . 152

Edf . 152

Png . 152

CONTENTS gnuplot 6.1 11

Keywords . 152

Scan . 153

Transpose . 153

Dx, dy, dz . 153

Flipx, flipy, flipz . 153

Origin . 153

Center . 153

Rotate . 154

Perpendicular . 154

Data . 154

Columnheaders . 156

Csv files . 156

Every . 156

Example datafile . 157

Filters . 158

Bins . 158

Convexhull . 158

Concavehull . 159

Delaunay . 160

Mask . 160

Sharpen . 160

If . 161

Zsort . 161

Index . 161

Skip . 162

Smooth . 162

Acsplines . 163

Bezier . 163

Bins . 164

Csplines . 164

Mcsplines . 164

Path . 164

Sbezier . 164

Unique . 164

Unwrap . 164

12 gnuplot 6.1 CONTENTS

Frequency . 165

Fnormal . 165

Cumulative . 165

Cnormal . 165

Kdensity . 165

Special-filenames . 166

Piped-data . 167

Using . 167

Format . 168

Using_examples . 168

Pseudocolumns . 169

Arrays . 169

Key . 170

Xticlabels . 170

X2ticlabels . 170

Yticlabels . 170

Y2ticlabels . 170

Zticlabels . 170

Volatile . 170

Functions . 171

Parametric . 171

Ranges . 171

Sampling . 172

1D sampling (x or t axis) . 172

2D sampling (u and v axes) . 173

For loops in plot command . 174

Title . 175

With . 176

Print 178

Printerr 179

Pwd 179

Quit 179

CONTENTS gnuplot 6.1 13

Raise 179

Refresh 179

Remultiplot 180

Replot 180

Reread 180

Reset 181

Return 181

Save 181

Set-show 182

Angles . 183

Arrow . 183

Autoscale . 185

Noextend . 185

Examples . 185

Polar mode . 186

Bind . 186

Bmargin . 186

Border . 186

Boxwidth . 188

Boxdepth . 189

Chi_shapes . 189

Color . 189

Colormap . 189

Colorsequence . 190

Clabel . 190

Clip . 190

Cntrlabel . 191

Cntrparam . 191

Examples . 193

Color box . 194

14 gnuplot 6.1 CONTENTS

Colornames . 194

Contour . 195

Cornerpoles . 196

Contourfill . 196

Dashtype . 196

Datafile . 197

Set datafile columnheaders . 197

Set datafile fortran . 197

Set datafile nofpe_trap . 197

Set datafile missing . 197

Set datafile separator . 198

Set datafile commentschars . 198

Set datafile binary . 199

Decimalsign . 199

Dgrid3d . 200

Dummy . 201

Encoding . 202

Errorbars . 202

Fit . 203

Fontpath . 204

Format . 204

Numeric format specifiers . 205

Complex format specifiers . 207

Time/date specifiers . 207

Examples . 208

Grid . 209

Hidden3d . 209

History . 211

Imaginary_i . 211

Isosamples . 212

Isosurface . 212

Isotropic . 212

Jitter . 213

Key . 213

3D key . 214

CONTENTS gnuplot 6.1 15

Key examples . 215

Extra key entries . 215

Key autotitle . 215

Key layout . 216

Key placement . 217

Key offset . 217

Key samples . 218

Multiple keys . 218

Label . 218

Examples . 220

Hypertext . 221

Linetype . 221

Link . 222

Lmargin . 222

Loadpath . 222

Locale . 223

Logscale . 223

Macros . 223

Mapping . 224

Margin . 224

Mark . 225

Micro . 226

Minussign . 226

Monochrome . 226

Mouse . 227

Doubleclick . 228

Format . 228

Mouseformat . 228

Scrolling . 229

Zoom . 229

Mttics . 229

Multiplot . 229

Mx2tics . 231

Mxtics . 231

Mxtics time . 232

16 gnuplot 6.1 CONTENTS

My2tics . 233

Mytics . 233

Mztics . 233

Nonlinear . 233

Object . 234

Rectangle . 235

Ellipse . 235

Circle . 236

Mark . 236

Polygon . 237

Depthorder . 237

Offsets . 237

Origin . 238

Output . 238

Overflow . 239

Float . 239

NaN . 239

Undefined . 239

Affected operations . 240

Palette . 240

Rgbformulae . 241

Defined . 242

Functions . 243

Gray . 243

Cubehelix . 243

Viridis . 243

Colormap . 244

File . 244

Gamma correction . 244

Maxcolors . 245

Color model . 245

Postscript . 245

Parametric . 246

Paxis . 246

Pixmap . 247

CONTENTS gnuplot 6.1 17

Pixmap from colormap . 247

Pm3d . 248

With pm3d (pm3d explicit) . 248

Pm3d implicit . 249

Algorithm . 249

Lighting . 250

Position . 250

Scanorder . 251

Clipping . 251

Color_assignment . 252

Corners2color . 252

Border . 252

Fillcolor . 252

Interpolate . 253

Deprecated_options . 253

Pointintervalbox . 253

Pointsize . 253

Polar . 254

Polar grid . 254

Print . 255

Psdir . 256

Raxis . 256

Rgbmax . 256

Rlabel . 256

Rmargin . 256

Rrange . 256

Rtics . 257

Samples . 257

Size . 257

Spiderplot . 258

Style . 258

Set style arrow . 259

Boxplot . 260

Set style data . 261

Set style fill . 261

18 gnuplot 6.1 CONTENTS

Set style fill border . 262

Set style fill transparent . 262

Set style function . 262

Set style histogram . 263

Set style increment . 263

Set style line . 263

Set style circle . 264

Set style rectangle . 265

Set style ellipse . 265

Set style parallelaxis . 265

Set style spiderplot . 266

Set style textbox . 266

Set style watchpoint . 266

Surface . 267

Table . 267

Plot with table . 268

Terminal . 268

Termoption . 269

Theta . 269

Tics . 270

Ticslevel . 271

Ticscale . 271

Timestamp . 271

Timefmt . 271

Title . 272

Tmargin . 273

Trange . 273

Ttics . 273

Urange . 274

Version . 274

Vgrid . 274

View . 274

Azimuth . 275

Equal_axes . 275

Projection . 275

CONTENTS gnuplot 6.1 19

Vrange . 276

Vxrange . 276

Vyrange . 276

Vzrange . 276

Walls . 276

Watchpoints . 277

X2data . 277

X2dtics . 277

X2label . 277

X2mtics . 277

X2range . 278

X2tics . 278

X2zeroaxis . 278

Xdata . 278

Time . 278

Xdtics . 279

Xlabel . 279

Xmtics . 280

Xrange . 280

Examples . 281

Extend . 282

Writeback . 282

Xtics . 282

Xtics series . 284

Xtics list . 284

Xtics time . 285

Geographic . 286

Xtics logscale . 286

Xtics rangelimited . 286

Xyplane . 287

Xzeroaxis . 287

Y2data . 287

Y2dtics . 287

Y2label . 287

Y2mtics . 287

20 gnuplot 6.1 CONTENTS

Y2range . 288

Y2tics . 288

Y2zeroaxis . 288

Ydata . 288

Ydtics . 288

Ylabel . 288

Ymtics . 288

Yrange . 288

Ytics . 288

Yzeroaxis . 289

Zdata . 289

Zdtics . 289

Zzeroaxis . 289

Cbdata . 289

Cbdtics . 289

Zero . 289

Zeroaxis . 289

Zlabel . 290

Zmtics . 290

Zrange . 290

Ztics . 290

Cblabel . 290

Cbmtics . 290

Cbrange . 291

Cbtics . 291

Shell 291

Show 291

Show colornames . 291

Show functions . 292

Show marks . 292

Show palette . 292

Show palette gradient . 292

Show palette palette . 292

Show palette rgbformulae . 293

CONTENTS gnuplot 6.1 21

Show plot . 293

Show variables . 293

Splot 293

Data-file . 294

Matrix . 295

Uniform matrix . 295

Nonuniform matrix . 296

Sparse matrix . 296

Every . 297

Examples . 297

Example datafile . 298

Grid data . 298

Splot surfaces . 299

Voxel-grid . 299

Stats (Statistical Summary) 299

Name . 302

Test for existence of a file . 302

Voxelgrid . 302

System 302

Test 303

Toggle 303

Undefine 303

Unset 304

Linetype . 304

Monochrome . 304

Output . 304

Terminal . 304

Warnings . 304

Update 305

Vclear 305

22 gnuplot 6.1 CONTENTS

Vfill 305

Warn 306

While 306

IV Terminal types 307

Complete list of terminals 307

Aifm . 307

Aqua . 307

Be . 308

Command-line_options . 308

Monochrome_options . 309

Color_resources . 309

Grayscale_resources . 309

Line_resources . 310

Block . 311

Caca . 312

Caca limitations and bugs . 313

Cairolatex . 313

Canvas . 315

Cgm . 316

Cgm font . 317

Cgm fontsize . 318

Cgm linewidth . 318

Cgm rotate . 318

Cgm solid . 318

Cgm size . 318

Cgm width . 319

Cgm nofontlist . 319

Context . 319

Requirements . 321

Calling gnuplot from ConTeXt . 321

Debug . 321

Domterm . 321

CONTENTS gnuplot 6.1 23

Animate . 322

Dumb . 322

Dxf . 323

Emf . 323

Epscairo . 324

Epslatex . 324

Epson_180dpi . 327

Fig . 327

Gif . 328

Animate . 329

Optimize . 329

Fonts . 329

Gpic . 330

Grass . 330

HP terminals . 331

Hpgl . 331

Imagen . 331

Jpeg . 331

Kittycairo . 332

Kittygd . 333

Latex . 333

Linux console . 333

Lua . 334

Lua tikz . 334

Pbm . 336

Pcl5 . 337

Pdfcairo . 338

Pict2e . 339

Pm . 340

Png . 340

Examples . 341

Pngcairo . 341

Postscript . 342

Editing postscript . 344

Postscript fontfile . 345

24 gnuplot 6.1 CONTENTS

Postscript prologue . 346

Postscript adobeglyphnames . 346

Pslatex and pstex . 347

Pstricks . 348

Qt . 349

Regis . 351

Sixelgd . 351

Svg . 352

Svga . 352

Tek40 . 353

Tek410x . 353

Texdraw . 353

Tgif . 354

Tikz . 355

Tkcanvas . 355

Webp . 357

Windows . 357

Graph-menu . 359

Printing . 359

Text-menu . 360

Wgnuplot.mnu . 360

Wgnuplot.ini . 361

Wxt . 361

X11 . 363

X11_fonts . 364

Command-line_options . 365

Color_resources . 366

Grayscale_resources . 367

Line_resources . 367

X11 pm3d_resources . 368

X11 other_resources . 368

Xlib . 369

V Index 369

gnuplot 6.1 25

Part I

Gnuplot

Copyright
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley
Copyright (C) 2004-2024 various authors

Permission to use, copy, and distribute this software and its documentation for any purpose with or without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source
code. Modifications are to be distributed as patches to the released version. Permission to distribute binaries
produced by compiling modified sources is granted, provided you
1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,

2. add special version identification to distinguish your version
in addition to the base release version number,

3. provide your name and address as the primary contact for the
support of your modified version, and

4. retain our contact information in regard to use of the base software.

Permission to distribute the released version of the source code along with corresponding source modifications
in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by applicable
law.

AUTHORS
Original Software:

Thomas Williams, Colin Kelley.
Gnuplot 2.0 additions:

Russell Lang, Dave Kotz, John Campbell.
Gnuplot 3.0 additions:

Gershon Elber and many others.
Gnuplot 4.0 and subsequent releases:

See list of contributors at head of this document.

Introduction

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MSWindows, macOS, and many
other platforms. The source code is copyrighted but freely distributed (i.e., you don’t have to pay for it). It was
originally created to allow scientists and students to visualize mathematical functions and data interactively, but
has grown to support many non-interactive uses such as web scripting. It is also used as a plotting engine by
third-party applications like Octave. Gnuplot has been supported and under active development since 1986.

Gnuplot can generate many types of plot in 2D and 3D. It can draw using lines, points, boxes, contours, vector
fields, images, surfaces, and associated text. It also supports specialized graphs such as heat maps, spider plots,
polar projection, histograms, boxplots, bee swarm plots, and nonlinear coordinates.

Gnuplot supports many different types of output: interactive screen terminals (with mouse and hotkey input),
direct output to pen plotters or modern printers, and output to many file formats (eps, emf, fig, jpeg, LaTeX,

26 gnuplot 6.1

pdf, png, postscript, ...). Gnuplot is easily extensible to include new output modes. A recent example is support
for webp animation. Mouseable plots embedded in web pages can be generated using the svg or HTML5 canvas
terminal drivers.

The command language of gnuplot is case sensitive, i.e. commands and function names written in lowercase
are not the same as those written in capitals. All command namesmay be abbreviated as long as the abbreviation
is not ambiguous. Any number of commands may appear on a line, separated by semicolons (;). Strings may
be set off by either single or double quotes, although there are some subtle differences. See syntax (p. 85) and
quotes (p. 85) for more details. Example:

set title "My First Plot"; plot 'data'; print "all done!"

Commands may extend over several input lines by ending each line but the last with a backslash (\). The
backslash must be the last character on each line. The effect is as if the backslash and newline were not there.
That is, no white space is implied, nor is a comment terminated. Therefore, commenting out a continued line
comments out the entire command (see comments (p. 38)). But note that if an error occurs somewhere on a
multi-line command, the parser may not be able to locate precisely where the error is and in that case will not
necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (|) separates mutually exclusive
choices. Gnuplot keywords or help topics are indicated by backquotes or boldface (where available). Angle
brackets (<>) are used to mark replaceable tokens. In many cases, a default value of the token will be taken
for optional arguments if the token is omitted, but these cases are not always denoted with braces around the
angle brackets.

For built-in help on any topic, type help followed by the name of the topic or help ? to get a menu of available
topics.

A large set of demo plots is available on the web page http://www.gnuplot.info/demo/

When run from command line, gnuplot is invoked using the syntax
gnuplot {OPTIONS} file1 file2 ...

where file1, file2, etc. are input files as in the load command. Options interpreted by gnuplot may come
anywhere on the line. Files are executed in the order specified, as are commands supplied by the -e option, for
example

gnuplot file1.in -e "reset" file2.in

The special filename "-" is used to force reading from stdin. Gnuplot exits after the last file is processed. If
no load files are named, Gnuplot takes interactive input from stdin. See help batch/interactive (p. 36) for
more details. See command-line-options (p. 36) for more details, or type

gnuplot --help

In sessions with an interactive plot window you can hit ’h’ anywhere on the plot for help about hotkeys (p. 78)
and mousing (p. 227) features.

Seeking-assistance / Bugs

The canonical gnuplot home page can be found at http://www.gnuplot.info

Before seeking help, please check file FAQ.pdf or the above website for a FAQ (Frequently Asked
Questions) list.

Another resource for help with specific plotting problems (not bugs) is

http://www.gnuplot.info/demo/
http://www.gnuplot.info
http://www.gnuplot.info/faq/
http://www.gnuplot.info/faq/

gnuplot 6.1 27

https://stackoverflow.com/questions/tagged/gnuplot

Bug reports and feature requests should be uploaded to the trackers at
https://sourceforge.net/p/gnuplot/_list/tickets

Please check previous reports to see if the bug you want to report has already been fixed in a newer version.

When reporting a bug or posting a question, please include full details of the gnuplot version, the terminal type,
and the operating system. A short self-contained script demonstrating the problem is very helpful.

Instructions for subscribing to gnuplot mailing lists may be found via the gnuplot development website
http://sourceforge.net/projects/gnuplot

Please note that before you write to any of the gnuplot mailing lists you must first subscribe to the list. This
helps reduce the amount of spam.

The address for mailing to list members is:
gnuplot-info@lists.sourceforge.net

A mailing list for those interested in the development version of gnuplot is:
gnuplot-beta@lists.sourceforge.net

New features in version 6

Version 6 is the latest major release in a history of gnuplot development dating back to 1986. It follows major
version 5 (2015) and subsequent minor version releases 5.2 (2017) and 5.4 (2020). Development continues in
a separate unreleased branch in the project git repository on SourceForge.

Some features described in this document are present only if chosen and configured at the time gnuplot is
compiled from source. To determine what configuration options were used to build the particular copy of
gnuplot you are running, type show version long.

Function blocks and scoped variables

This version of gnuplot introduces a mechanism for invoking a block of standard gnuplot commands as a
callable function. A function block can accept from 0 to 9 parameters and returns a value. Function blocks can
be used to calculate and assign a new value to a variable, to combine with other functions and operators, or to
perform a repetitive task preparing data. There are three components to this mechanism. See local (p. 146),
scope (p. 81), function blocks (p. 142), return (p. 181).

• The local qualifier allows optional declaration of a variable or array whose scope is limited to the duration
of execution of the program unit in which it is found. These units currently include execution of a load
or call statement, function block evaluation, and the code block in curly brackets following an if, else,
do for, or while statement. If the name of a local variable duplicates the name of a global variable, the
global variable is shadowed until exit from the local scope.

• The function command declares a named function block (effectively an array of strings) containing
gnuplot commands. When the function block is invoked, commands are executed successively until the
end of the block or until a return command is encountered.

http://sourceforge.net/projects/gnuplot

28 gnuplot 6.1

• The return<expression> command terminates execution of a function block. The result of evaluating
<expression> is returned as the value of the function. Anywhere outside a function block return acts
like exit.

Please see function_block.dem for an example of using this mechanism to define and plot a non-trivial function
that is too complicated for a simple one-line definition f(x) =

Special and complex-valued functions

Gnuplot 6 provides an expanded set of complex-valued functions and updated versions of some functions that
were present in earlier versions.

• New: Riemann zeta function with complex domain and range. See zeta (p. 55).

• Updated lower incomplete gamma function with improved domain and precision. Complex arguments
accepted. See igamma (p. 49).

• New upper incomplete gamma function (real arguments only). See uigamma (p. 53).

• Updated incomplete beta function with improved domain and precision. See ibeta (p. 50).

• New function for the inverse incomplete gamma function. See invigamma (p. 50).

• New function for the inverse incomplete beta function. See invibeta (p. 50).

• New complex function LambertW(z,k) returns the kth branch of multivalued function W_k(z). Note
that the older function lambertw(x) = real(LambertW(real(z), 0)). See LambertW (p. 50).

• New complex function lnGamma(z). Note that existing function lgamma(x) = real(lnGamma(real(z)).
See lnGamma (p. 50).

• Complex function conj(z) returns the complex conjugate of z.

• Synchrotron function F(x), see SynchrotronF (p. 51).

• acosh(z) domain extended to cover negative real axis.

• asin(z) asinh(z) improved precision for complex arguments.

• Predefined variable I = sqrt(-1) = {0,1} for convenience. This is useful because gnuplot does not accept
{a,b} as a valid complex constant but does accept (a + b*I) as a valid complex expression.

Additional special functions are supported if a suitable external library is found at build time. See special_func-
tions (p. 51).

• Complex Bessel functions Iν(z), Jν(z), Kν(z), Yν(z) of order ν (real) with complex argument z. See
BesselK (p. 48).

• Complex Hankel functions H1ν(z), H2ν(z) of order ν with complex z. See BesselH1 (p. 49).

• Complex Airy functions Ai(z), Bi(z).

• Complex exponential integral of order n. See expint (p. 49).

• Fresnel integrals C(x) and S(x). See FresnelC (p. 49).

• Function VP_fwhm(sigma,gamma) returns the full width at half maximum of the Voigt profile. See
VP (p. 45), VP_fwhm (p. 45).

gnuplot 6.1 29

New plot styles

• The plot style with surface works in 2D polar coordinates to produce a solid-fill gridded representation
of the plane, colored by weighted contributions from an arbitrary set of input points. This is analogous
to the use of dgrid3d and stylewith pm3d to produce a 3D gridded surface. See set polar grid (p. 254)
and polar heatmap (p. 117).

• New 2D plot style with sectors is an alternative to generating a full polar gridded surface. For each
input data point it generates a single annular wedge in a conceptual polar grid. Unlike polar mode with
surface it can be used in either a polar or cartesian coordinate graph.

• New 2D plot style with hsteps allows construction of step-like plots with a variety of representations in
addition to those offered by existing styles steps, histeps, fsteps, and fillsteps. See hsteps (p. 108).

• Plot style with lines now has a filter option sharpen. This filter detects spikes in a function plot that
appear truncated in the output because the peak lies between two x-coordinates at which the function
has been sampled. It adds a new sample point at the location of each such peak. See filters (p. 158).

• Although it is not strictly speaking a new plot style, the combination of the concave hull filter with along-
path smoothing of filled areas allows creation of ’blobby region’ plots showing, for example, the extents
of overlapping data clusters. See concavehull (p. 159).

• 3D plot style with pm3d accepts an optional modifier zclip [zmin:zmax] that selects only a slice of the
full surface. Successive plots with incremental changes to the clipping limits can be used to animate a
cross-sectional cutaway view in 3D or to create a filled area contour map. This is automated by a new
plot style with contourfill, that is particularly useful in 2D projection. See set contourfill (p. 196).

Hulls, masks, and smoothing

• A cluster of 2D points can be replaced by its bounding polygon using the new filter convexhull. A
path-smoothed bounding curve can be plotted as a filled area using "convexhull smooth path with filled-
curves". See convexhull (p. 158).

• An alternative experimental filter concavehull generates a bounding polygon that is not necessarily con-
vex; instead it forms a χ-shape determined by a characteristic length parameter that controls the degree
of concavity. This essentially draws a blob around the data points. See concavehull (p. 159).

• A convex hull or other polygon can be used as a mask to display only selected portions of a pm3d surface
or an image plot. See new plot style with mask (p. 115) (defines a mask) and keyword mask (applies
the mask to a subsequent plot component).

• curve smoothing using along-path cubic splines suitable for closed curves or for 2D curves that are not
monotonic on x. See smooth path (p. 164). This allows smoothing of hulls and masks.

• cubic spline smoothing of 3D lines. See splot smooth csplines (p. 164)

• Smoothing options apply to plotting with filledcurves (p. 99) {above|below|between}.

• New keyword period for smoothing periodic data. See smooth kdensity (p. 165).

Named palettes

• The current palette can be saved to a named colormap for future use. See set colormap (p. 189).

30 gnuplot 6.1

• pm3d and image plots can specify a previously saved palette by name. This permits the use of multiple
palettes in a single plot command. See colorspec palette (p. 66).

• Named palette colormaps can be manipulated as arrays of 32-bit ARGB color values. This permits
addition of alpha-channel values or other modifications not easily specified in a set palette command.

• There is a new predefined color scheme set palette viridis.
• Palettes read from a file or datablock (set palette file) may be specified either using fractional color
components or 24-bit packed RGB values.

New data formats

• The sparse matrix=(cols,rows) option to plot and splot generates a uniform pixel grid into which
individual pixel values may be loaded in any order. This is useful for plotting heat maps from incomplete
data. See sparse (p. 296).

• During input of non-uniform matrix data, column(0) now returns the linear ordering of matrix elements.
I.e. for element A[i,j] in an MxNmatrix A, column(0)/M gives the row index i, and column(0)%M gives
the column index j.

New built-in functions and array operations

• palette(z) returns the current RGB palette color mapping z into cbrange.
• rgbcolor("name") returns the 32bit ARGB value for a named color.
• index(Array, element) returns the first index i for which Array[i] is equal to element. See arrays
(p. 59).

• User-defined functions allow an array as a parameter. Example: dot(A,B) = sum [i=1:|A|] A[i]*B[i]
• Array slices are generated by appending a range to the array name. Array[n] is single element.
Array[n:n+5] is a six element slice of the original array. See arrays (p. 59), slice (p. 60).

• split("string", "separator") unpacks the fields in a string into an array of strings. See split (p. 54).
• join(array, "separator") is the complement to split. It concatenates the elements of a string array into
a single string with field separators. See join (p. 55).

• stats <non-existent file> yields a testable value. See stats test (p. 302).
• stats $vgrid finds min/max/mean/stddev of voxels in grid

Program control flow

• New syntax if ... else if ... else ...
• XDG base directory conventions for configuration preferences are supported. The program reads
initial commands from $XDG_CONFIG_HOME/gnuplot/gnuplotrc. Session command history is
saved to $XDG_STATE_HOME/gnuplot_history. If these files are not found, $HOME/.gnuplot and
$HOME/.gnuplot_history are used as in previous gnuplot versions.

• unset warnings suppresses output of warning messages to stderr.
• warn "message" prints filename, line number and message to stderr.

gnuplot 6.1 31

• Exception handling for the "fit" command. Control always returns to the next line of input, even in the
case of fit errors. On return, FIT_ERROR is non-zero if an error occurred. This allows scripted recovery
from a bad fit. See fit error_recovery (p. 139).

Multiplots

Commands executed during creation of a multiplot are now stored in a datablock
$GPVAL_LAST_MULTIPLOT. They can be replayed by the new command remultiplot. Certain
saved commands that would be problematic during replay are not reexecuted. Note that the regenerated
multiplot may not exactly match the original if graphics settings (axis ranges, logscale, etc) have changed in
the interim.

The following sequence of commands will save both the original graphics state and the multiplot commands to
a script file that can be reloaded later.

save "my_multiplot.gp"
set multiplot
... various commands to generate the component plots ...
unset multiplot
set print "my_multiplot.gp" append
print $GPVAL_LAST_MULTIPLOT
unset print

• The replot command will check to see if the most recent plot command was part of a completed multi-
plot. If so, it will execute remultiplot instead of reexecuting that single plot command.

• Mousing operations while a multiplot is displayed will also automatically treat a replot/refresh request as
remultiplot. However the mouse coordinate readout and thus zoom/pan operations are still based solely
on the axis settings for the final component plot, as was the case in earlier gnuplot versions. Because the
commands stored in $GPVAL_LAST_MULTIPLOT may not be sufficient to recreate the appropriate
graphics settings for each component plot, mousing in a multiplot may not act as you would like. This
may be improved in the future.

New terminals and terminal options

• New terminals kittygd and kittycairo provide in-window graphics for terminal emulators that support
the kitty protocol. Kitty is an alternative to sixel graphics that offers full 24-bit RGB color. See kittycairo
(p. 332).

• New terminal block for text-mode pseudo-graphics uses Unicode block or Braille characters to offer
improved resolution compared to the dumb or caca terminals.

• New terminal webp generates a single frame or an animation sequence using webp encoding. Frames
are generated using pngcairo, then encoded through the WebPAnimEncoder API exported by libwebp
and libwebpmux.

• Terminals that use the same window for text entry and graphical display, including dumb, sixel, kitty,
and block, now respond to keyboard input during a pausemouse command. While paused, they interpret
keystrokes in the same way that a mousing terminal would. See pseudo-mousing (p. 148). For example
the left/right/up/down arrow keys change the view angle of 3D plots and perform incremental pan/zoom
steps for 2D plots.

32 gnuplot 6.1

Watchpoints

Watchpoints are target values associated with individual plots in a graph. As that plot is drawn, each component
line segment is monitored to see if its endpoints bracket the target value of a watchpoint coordinate (x, y, or
z) or function f(x,y). If a match is found, the [x,y] coordinates of the match point are saved for later use. See
watchpoints (p. 87). Possible uses include

• Find the intersection points of two curves
• Find zeros of a function
• Find and notate where a dependent variable (y or z) or function f(x,y) crosses a threshold value
• Use the mouse to track values along multiple plots simultaneously
• Control placement of labels on contour lines

Week-date time support

The Covid-19 pandemic of 2020/2021 generated increased interest in plotting epidemiological data, which is
often tabulated using a "week date" reporting convention. Deficiencies with gnuplot support for this convention
were remedied and the support for week-date time was extended.

• Time specifier format %W has been brought into accord with the ISO 8601 week date standard.
• Time specifier format %U has been brought into accord with the CDC/MMWR week date standard.
• New function tm_week(time, std) returns ISO or CDC standard week of year.
• New function weekdate_iso(year, week, day) converts ISO standard week date to calendar time.
• New function weekdate_cdc(year, week, day) converts CDC standard week date to calendar time.

Other new features

For features added since version 6.0, see development (p. 35).

• Time units for setting major and minor tics. Both major and minor tics along a time axis now accept
tic intervals given in units of minutes/hours/days/weeks/months/years. See set xtics (p. 282), set mxtics
time (p. 232).

• The character sequence $# in a using specifier evaluates to the total number of columns available in the
current line of data. For example "plot FOO using 0:(column($# - 1))" plots the last-but-one field of
each row.

• keyword binvalue=avg plots the average, rather than the sum, of binned data.
• set colorbox bottom places a horizontal color box underneath the plot rather than a vertical box on the
right.

• Improved rendering of intersecting pm3d surfaces - overlapping surface tiles are split into two pieces
along the line of intersection so that tiles from one surface do not incorrectly protrude though the other
surface.

• User-controlled spotlight added to the pm3d lighting model. See set pm3d spotlight (p. 250).
• New options to force total key width and number of columns. See key layout (p. 216).

gnuplot 6.1 33

• set pm3d border retrace draws a border around each pm3d quadrangle in the same color as the filled
area. In principle this should have no visible effect, but it prevents some display modes like glitchy pdf
or postscript viewers from introducing aliasing artifacts.

• set isotropic adjusts the axis scaling in both 2D and 3D plots such that the x, y, and z axes all have the
same scale.

• Change: Text rotation angle is not limited to integral degrees.

• Special (non-numerical) linetypes lt nodraw, lt black, lt background See special_linetypes (p. 68).

• Data-driven color assignments in histogram plots. See histograms colors (p. 107).

• The position of the key box can be manually tweaked by specifying an offset to be added to whatever
position the program would otherwise use. See set key offset (p. 217).

• plot .. if (<expression>) New filter for plot and splot commands to select only those input lines that
match a target expression. See filters if (p. 161).

Brief summary of features introduced in version 5

Features introduced in 5.4

• Expressions and functions use 64-bit integer arithmetic. See integer (p. 47)

• 2D plot styles polygons (p. 118), spiderplot (p. 120), arrows (p. 90)

• 3D plot styles boxes (p. 91), circles (p. 96), polygons (p. 118), isosurface (p. 127) and other represen-
tations of gridded voxel data

• Data preprocessing filter zsort (p. 161)

• Construction of customized keys using keyentry (p. 215)

• New LaTeX terminal pict2e supersedes older terminals latex (p. 333), emtex (p. 333), eepic (p. 333),
and tpic (p. 333). The older terminals are no longer built by default

• set pixmap imports a png/jpeg/gif image as a pixmap that can be scaled and positioned anywhere in a
plot or on the page

• Enhanced text mode accepts \U+xxxx (xxxx is a 4 or 5 character hexadecimal) as representing a Unicode
code point that is converted to the corresponding UTF-8 byte sequence on output

• Revised syntax for with parallelaxes allows convenient iteration inside the plot command, similar to
plot styles histogram and spiderplot

Features introduced in 5.2

• Nonlinear coordinate systems (see set nonlinear (p. 233))

• Automated binning of data (see bins (p. 158))

• 2D beeswarm plots. See set jitter (p. 213)

• 3D plot style zerrorfill (p. 127)

• 3D lighting model provides shading and specular highlighted (see lighting (p. 250)).

• Array data type, associated commands and operators. See arrays (p. 59).

34 gnuplot 6.1

• New terminals sixelgd, domterm
• New format descriptors tH tM tS handle relative times (interval lengths). See time_specifiers (p. 207).

Features introduced in 5.0

• Terminal independent dash types.
• The default sequence of colors used for successive elements in a plot is more easily distinguished by users
with color-vision defects.

• New plot types with parallelaxes, with table.
• Hypertext labels activated by a mouse-over event.
• Explicit sampling ranges in 2D and 3D function plots and pseudofiles ’+’ and ’++’.
• Plugin support through new command import that attaches a user-defined function name to a function
provided by an external shared object.

Differences between versions 5 and 6

Some changes introduced in version 5 could cause certain scripts written for earlier versions of gnuplot to fail
or to behave differently. There are very few such changes in version 6.

Deprecated syntax

Deprecated in version 5.4, removed in 6.0
use of a file containing `reread` to perform iteration
N = 0; load "file-containing-reread";
file content:

N = N+1
plot func(N,x)
pause -1
if (N<5) reread

Current equivalent
do for [N=1:5] {

plot func(N, x)
pause -1

}

Deprecated in version 5.4, removed in 6.0
set dgrid3d ,,foo # no keyword to indicate meaning of foo

Current equivalent
set dgrid3d qnorm foo # (example only; qnorm is not the only option)

Deprecated in version 5.0, removed in 6.0
set style increment user

Current equivalent
use "set linetype" to redefine a convenient range of linetypes
explicit use of "linestyle N" or "linestyle variable"

Deprecated in version 5.0, removed in 6.0
show palette fit2rgbformulae

gnuplot 6.1 35

Development branch (version 6.1)

Version 6.0 is the most recent gnuplot stable release. Development of new features and potentially disruptive
code revision is carried out in a separate branch that self-identifies as version 6.1. Since the development branch
code may change at any time, you should also check the "last modified" date reported on startup or by gnuplot
–version.

Here is a partial list of features under development that have not yet appeared in a stable release. Items near
the top of the list may be back-ported to an incremental update of the stable version (6.0.x). Items near the
bottom of the list may not appear in a stable release before version 6.2.

• New 2D plot style with hsteps allows construction of step-like plots with a variety of representations in
addition to those offered by existing styles steps, histeps, fsteps, and fillsteps. See hsteps (p. 108). (in
6.0.2)

• Blank line equivalent for binary data files, needed to support binary input for plot styles that expect a
blank line to separate data items. See binary blank (p. 151). (in 6.0.2)

• In previous gnuplot versions all 3D polygons, objects, and filled areas shared a single border color and
linewidth taken from "set pm3d". This limitation is now removed; border properties can be specified
per-plot or per-object. This change affects any scripts that expected "set pm3d" to affect the borders of
3D polygons and boxes. (in 6.0.3)

• splot with contourfill at base (in 6.0.3)
• Revised implementation of local variables (faster, more well-defined scope). (in 6.0.2)
• Input data to plot and splot can be filtered through a conditional expression outside the "using" section.
For example: plot DATA using 2:3 with boxes if (stringcolumn(1) eq "ABC") (in 6.0.3)

• New command save changes is equivalent to the old contributed external script gpsavediff. This com-
mand saves only the program settings, variables, and functions that distinguish the current state from the
program state at the start of the current gnuplot session. See save changes (p. 181). (in 6.0.3)

• Revised wxt terminal driver with more robust threading and error recovery. (in 6.0.3)
• "linestyle variable"
• pm3d coloring for 3D polygons (e.g. Delaunay tessellation of surfaces). See delaunay (p. 160).
• Alternatives to gdlib for handling image files as data
• Iteration over array contents array A; for [e in A] { ... } [EXPERIMENTAL]
• Deprecation of the "sample" keyword
• New numerical operation "prod" (cumulative product). See product (p. 57). Example: N! == prod
[i=1:N] i

• New category of graphical objects called "marks" that allow definition of complex symbols used in plots.
See marks (p. 70).

• See escape sequences (p. 41). Unicode escape sequences are accepted in both "enhanced" and "noen-
hanced" text. Unicode escape sequences are expanded during substring evaluation. Octal escape se-
quences are required to contain exactly three digits.

• New gprintf format specifiers %C and %Ci to output complex values. See gprintf complex (p. 207)
and imaginary_i (p. 211). [EXPERIMENTAL]

• Document that the program offers predefined variables I, Inf, and NaN

36 gnuplot 6.1

Demos and Online Examples

The gnuplot distribution contains a collection of examples in the demo directory. You can
browse on-line versions of these examples produced by the png, svg, and canvas terminals at
http://gnuplot.info/demos

The commands that produced each demo plot are shown next to the plot, and the corresponding gnuplot script
can be downloaded to serve as a model for generating similar plots.

Batch/Interactive Operation

Gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together.

Command-line arguments are assumed to be either program options or names of files containing gnuplot
commands. Each file or command string will be executed in the order specified. The special filename "-" is
indicates that commands are to be read from stdin. Gnuplot exits after the last file is processed. If no load
files and no command strings are specified, gnuplot accepts interactive input from stdin.

Command line options

Gnuplot accepts the following options on the command line
-V, --version
-h, --help
-p, --persist
-d, --default-settings
-s, --slow
-e "command1; command2; ..."
-c scriptfile ARG1 ARG2 ...

-p tells the program not to close any remaining interactive plot windows when the program exits.

-d tells the program not to execute any private or system initialization (see initialization (p. 82)).

-s tells the program to wait for slow font initialization on startup. Otherwise it prints an error and continues
with bad font metrics.

-e "command" tells gnuplot to execute that single command before continuing.

-c is equivalent to -e "call scriptfile ARG1 ARG2 ...". See call (p. 129).

Examples

To launch an interactive session:
gnuplot

To execute two command files "input1" and "input2" in batch mode:
gnuplot input1 input2

To launch an interactive session after an initialization file "header" and followed by another command file
"trailer":

gnuplot header - trailer

http://gnuplot.info/demos/

gnuplot 6.1 37

To give gnuplot commands directly in the command line, using the "-persist" option so that the plot remains
on the screen afterwards:

gnuplot -persist -e "set title 'Sine curve'; plot sin(x)"

To set user-defined variables a and s prior to executing commands from a file:

gnuplot -e "a=2; s='file.png'" input.gpl

Canvas size

This documentation uses the term "canvas" to mean the full drawing area available for positioning the plot and
associated elements like labels, titles, key, etc. NB: For information about the HTML5 canvas terminal see set
term canvas (p. 315).

set term<terminal_type> size<XX>,<YY> controls the size of the output file, or "canvas". By default,
the plot will fill this canvas.

set size <XX>, <YY> scales the plot itself relative to the size of the canvas. Scale values less than 1 will
cause the plot to not fill the entire canvas. Scale values larger than 1 will cause only a portion of the plot to fit
on the canvas. Please be aware that setting scale values larger than 1 may cause problems.

Example:

set size 0.5, 0.5
set term png size 600, 400
set output "figure.png"
plot "data" with lines

These commands produce an output file "figure.png" that is 600 pixels wide and 400 pixels tall. The plot will
fill the lower left quarter of this canvas.

Note: In early versions of gnuplot some terminal types used set size to control the size of the output canvas.
This was deprecated in version 4.

Command-line-editing

Command-line editing and command history are supported using either an external gnu readline library, an
external BSD libedit library, or a built-in equivalent. This choice is a configuration option at the time gnuplot
is built.

The editing commands of the built-in version are given below. Please note that the action of the DEL key is
system-dependent. The gnu readline and BSD libedit libraries have their own documentation.

38 gnuplot 6.1

Command-line Editing Commands
Character Function

Line Editing
^B move back a single character.
^F move forward a single character.
^A move to the beginning of the line.
^E move to the end of the line.
^H delete the previous character.
DEL delete the current character.
^D delete current character. EOF if line is empty.
^K delete from current position to the end of line.
^L redraw line in case it gets trashed.
^U delete the entire line.
^W delete previous word.
^V inhibits the interpretation of the following key as editing command.
TAB performs filename-completion.

History
^P move back through history.
^N move forward through history.
^R starts a backward-search.

Comments

The comment character #may appear almost anywhere in a command line, and gnuplot will ignore the rest of
that line. A # does not have this effect inside a quoted string. Note that if a commented line ends in ’\’ then
the subsequent line is also treated as part of the comment.

See also set datafile commentschars (p. 198) for specifying a comment character for data files.

Coordinates

The commands set arrow, set key, set label and set object allow you to draw something at an arbitrary position
on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be first, second, polar, graph, screen, or character.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second places it in the
system defined by the x2,y2 axes (top and right); graph specifies the area within the axes — 0,0 is bottom left
and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z to get to the base — see set
xyplane (p. 287)); screen specifies the screen area (the entire area — not just the portion selected by set size),
with 0,0 at bottom left and 1,1 at top right. character coordinates are used primarily for offsets, not absolute
positions. The character vertical and horizontal size depend on the current font.

polar causes the first two values to be interpreted as angle theta and radius r rather than as x and y. This could
be used, for example, to place labels on a 2D plot in polar coordinates or a 3D plot in cylindrical coordinates.

If the coordinate system for x is not specified, first is used. If the system for y is not specified, the one used
for x is adopted.

gnuplot 6.1 39

In some cases, the given coordinate is not an absolute position but a relative value (e.g., the second position
in set arrow ... rto). In most cases, the given value serves as difference to the first position. If the given
coordinate belongs to a log-scaled axis, a relative value is interpreted as multiplier. For example,

set logscale x
set arrow 100,5 rto 10,2

plots an arrow from position 100,5 to position 1000,7 since the x axis is logarithmic while the y axis is linear.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string according
to the timefmt format string. See set xdata (p. 278) and set timefmt (p. 271). Gnuplot will also accept an
integer expression, which will be interpreted as seconds relative to 1 January 1970.

Datastrings

Data files may contain string data consisting of either an arbitrary string of printable characters containing no
whitespace or an arbitrary string of characters, possibly including whitespace, delimited by double quotes. The
following line from a datafile is interpreted to contain four columns, with a text field in column 3:
1.000 2.000 "Third column is all of this text" 4.00

Text fields can be positioned within a 2-D or 3-D plot using the commands:
plot 'datafile' using 1:2:4 with labels
splot 'datafile' using 1:2:3:4 with labels

A column of text data can also be used to label the ticmarks along one or more of the plot axes. The example
below plots a line through a series of points with (X,Y) coordinates taken from columns 3 and 4 of the input
datafile. However, rather than generating regularly spaced tics along the x axis labeled numerically, gnuplot
will position a tic mark along the x axis at the X coordinate of each point and label the tic mark with text taken
from column 1 of the input datafile.
set xtics
plot 'datafile' using 3:4:xticlabels(1) with linespoints

There is also an option that will interpret the first entry in a column of input data (i.e. the column heading) as
a text field, and use it as the key title for data plotted from that column. The example given below will use the
first entry in column 2 to generate a title in the key box, while processing the remainder of columns 2 and 4 to
draw the required line:
plot 'datafile' using 1:(f($2)/$4) with lines title columnhead(2)

Another example:
plot for [i=2:6] 'datafile' using i title "Results for ".columnhead(i)

This use of column headings is automated by set datafile columnheaders or set key autotitle columnhead.
See labels (p. 112), using xticlabels (p. 170), plot title (p. 175), using (p. 167), key autotitle (p. 215).

Enhanced text mode

Many terminal types support an enhanced text mode in which additional formatting information can be embed-
ded in the text string. For example, "x^2"will write x-squared as we are used to seeing it, with a superscript 2.
This mode is selected by default when you set the terminal, but may be toggled afterward using "set termoption
[no]enhanced", or disabled for individual strings as in set label "x_2" noenhanced.

Note: For output to TeX-based terminals (e.g. cairolatex, pict2e, pslatex, tikz) all text strings should instead
use TeX/LaTeX syntax. See latex (p. 333).

40 gnuplot 6.1

Enhanced Text Control Codes
Control Example Result Explanation
^ a^x ax superscript
_ a_x ax subscript
@ a@^b_{cd} abcd phantom box (occupies no width)
& d&{space}b d b inserts space of specified length
~ ~a{.8-} ã overprints ’-’ on ’a’, raised by .8

times the current fontsize
{/Times abc} abc print abc in font Times at current size
{/Times*2 abc} abc print abc in font Times at twice current size
{/Times:Italic abc} abc print abc in font Times with style italic
{/Arial:Bold=20 abc} abc print abc in boldface Arial font size 20

\U+ \U+221E ∞ Unicode point U+221E INFINITY

The markup control characters act on the following single character or bracketed clause. The bracketed clause
may contain a string of characters with no additional markup, e.g. 2^{10}, or it may contain additional markup
that changes font properties. Font specifiers MUST be preceded by a ’/’ character that immediately follows the
opening ’{’. If a font name contains spaces it must be enclosed in single or double quotes.

Examples: The first example illustrates nesting one bracketed clause inside another to produce a boldface A
with an italic subscript i, all in the current font. If the clause introduced by :Normal were omitted the subscript
would be both italic and boldface. The second example illustrates the same markup applied to font "Times
New Roman" at 20 point size.

{/:Bold A_{/:Normal{/:Italic i}}}
{/"Times New Roman":Bold=20 A_{/:Normal{/:Italic i}}}

The phantom box is useful for a@^b_c to align superscripts and subscripts but does not work well for overwrit-
ing a diacritical mark on a letter. For that purpose it is much better to use an encoding (e.g. utf8) that contains
letters with accents or other diacritical marks. See set encoding (p. 202). Since the box is non-spacing, it is
sensible to put the shorter of the subscript or superscript in the box (that is, after the @).

Space equal in length to a string can be inserted using the ’&’ character. Thus
'abc&{def}ghi'

would produce
'abc ghi'.

The ’ ̃’ character causes the next character or bracketed text to be overprinted by the following character or
bracketed text. The second text will be horizontally centered on the first. Thus ’ ̃a/’ will result in an ’a’ with
a slash through it. You can also shift the second text vertically by preceding the second text with a number,
which will define the fraction of the current fontsize by which the text will be raised or lowered. In this case the
number and text must be enclosed in brackets because more than one character is necessary. If the overprinted
text begins with a number, put a space between the vertical offset and the text (’ ̃{abc}{.5 000}’); otherwise
no space is needed (’ ̃{abc}{.5 — }’). You can change the font for one or both strings (’ ̃a{.5 /*.2 o}’ — an ’a’
with a one-fifth-size ’o’ on top — and the space between the number and the slash is necessary), but you can’t
change it after the beginning of the string. Neither can you use any other special syntax within either string.
Control characters must be escaped, e.g. ’ ̃a{.8\^}’ to print â. See escape sequences (p. 41) below.
Note that strings in double-quotes are parsed differently than those enclosed in single-quotes. The major dif-
ference is that backslashes may need to be doubled when in double-quoted strings.

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source distribution contains more exam-
ples of the enhanced syntax, as does the demo enhanced_utf8.dem

http://www.gnuplot.info/demo/enhanced_utf8.html

gnuplot 6.1 41

Escape sequences

The backslash character \ introduces an escape sequence representing a single character.
The form \X, where X is any single character, is handled differently in single- and double- quoted strings. See
quotes (p. 85). The "\X" is used verbatim in single-quoted non-enhanced text. In double-quoted text "\X"
becomes "X" except for the special cases \n (newline) \r (return) and \t (tab).
The form \ooo, where ooo is a 3 digit octal value, can be used to index a known character code in a specific font
encoding. This is mostly useful for the PostScript terminal because it cannot easily handle UTF-8 encoding.
For example, PostScript output historically relied on the Adobe Symbol font, which uses a custom encoding
in which octal 245 represents the infinity symbol. You could embed this in an enhanced text string by giving
the font name and the character code "{/Symbol \245}". This mechanism may also remain useful to access
characters in non-UTF8 fonts or locales.

You can specify a character by its Unicode code point as \U+hhhh, where hhhh is the 4 or 5 character hex-
adecimal code point. For example the code point for the infinity symbol ∞ is \U+221E. This will be converted
to a UTF-8 byte sequence on output if appropriate. In a UTF-8 environment this mechanism is not needed for
printable special characters since they are handled in a text string like any other character. However it is useful
for combining forms or supplemental diacritical marks (e.g. an arrow over a letter to represent a vector). See
utf8 (p. 202), string encoding (p. 83), and the online unicode demo.

Since Unicode codepoints may consist of either 4 or 5 characters, the syntax would become ambiguous if a 4
character escape were immediately followed by another character than might be misinterpreted as being part
of a 5 digit code. In such a case you must separate the escape sequence from the next character.

Example: Create a label "α1 + α2"
enhanced text: set label "{\U+03B1}1 + {\U+03B1}2" enhanced
non-enhanced text: set label "\U+03B1\1 + \U+03B1\2" noenhanced

Note that Unicode escape sequences are stored in a string without interpretation. The escape sequence is
replaced by the character it represents when the string is printed or evaluated during substring processing.
Thus after defining a string S = "A + \U+03A3 B", S[5:5] evaluates to "Σ" rather than "\", but (S eq S[1:*])
evaluates to FALSE because S holds the unprocessed escape sequence while evaluation of S[1:*] replaces the
escape sequence with the UTF-8 byte sequence for Σ. Both will display as "A + Σ B" when used in a plot.

Environment

A number of shell environment variables are understood by gnuplot. None of these are required.

GNUTERM, if defined, is passed to "set term" on start-up. This can be overridden by a system or personal
initialization file (see startup (p. 82)) and of course by later explicit set term commands. Terminal options
may be included. E.g.

bash$ export GNUTERM="postscript eps color size 5in, 3in"

GNUHELP, if defined, sets the pathname of the HELP file (gnuplot.gih).

Initialization at start-up may search for configuration files $HOME/.gnuplot, and
$XDG_CONFIG_HOME/gnuplot/gnuplotrc. On MS-DOS, Windows and OS/2, files in GNUPLOT or
USERPROFILE are searched. For more details see startup (p. 82).

On Unix, PAGER is used as an output filter for help messages.

On Unix, SHELL is used for the shell command. On MS-DOS and OS/2, COMSPEC is used.

http://www.gnuplot.info/demo/unicode.html

42 gnuplot 6.1

FIT_SCRIPT may be used to specify a gnuplot command to be executed when a fit is interrupted — see fit
(p. 133). FIT_LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The variable
may contain a single directory name, or a list of directories separated by a platform-specific path separator, eg.
’:’ on Unix, or ’;’ on DOS/Windows/OS/2 platforms. The contents of GNUPLOT_LIB are appended to the
loadpath variable, but not saved with the save and save set commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library (see fonts (p. 61)). For these terminals
GDFONTPATH and GNUPLOT_DEFAULT_GDFONT may affect font selection.

The postscript terminal uses its own font search path. It is controlled by the environmental variable
GNUPLOT_FONTPATH.

GNUPLOT_PS_DIR is used by the postscript driver to search for external prologue files. Depending on the
build process, gnuplot contains either a built-in copy of those files or a default hardcoded path. You can use
this variable to have the postscript terminal use custom prologue files rather than the default prologue files. See
postscript prologue (p. 346).

Expressions

In general, anymathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The precedence
of these operators is determined by the specifications of the C programming language. White space (spaces
and tabs) is ignored inside expressions.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered as
"1", "-10", etc; reals as "1.0", "-10.0", "1e1", 3.5e-1, etc. The most important difference between the
two forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 = 2.5. In
mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result of division of a
negative integer by a positive one may vary among compilers. Try a test like "print -5/2" to determine if your
system always rounds down (-5/2 yields -3) or always rounds toward zero (-5/2 yields -2).

The integer expression "1/0"may be used to generate an "undefined" flag, which causes a point to be ignored.
Or you can use the pre-defined variable NaN to achieve the same result. See using (p. 167) for an example.

Gnuplot can also perform simple operations on strings and string variables. For example, the expression ("A" .
"B" eq "AB") evaluates as true, illustrating the string concatenation operator and the string equality operator.

A string which contains a numerical value is promoted to the corresponding integer or real value if used in a
numerical expression. Thus ("3" + "4" == 7) and (6.78 == "6.78") both evaluate to true. An integer, but
not a real or complex value, is promoted to a string if used in string concatenation. A typical case is the use of
integers to construct file names or other strings; e.g. ("file" . 4 eq "file4") is true.

Substrings can be specified using a postfixed range descriptor [beg:end]. For example, "ABCDEF"[3:4] ==
"CD" and "ABCDEF"[4:*] == "DEF" The syntax "string"[beg:end] is exactly equivalent to calling the
built-in string-valued function substr("string",beg,end), except that you cannot omit either beg or end from the
function call.

Complex values

Arithmetic operations and most built-in functions support the use of complex arguments. Complex constants
are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical constants. Thus {0,1}

gnuplot 6.1 43

represents ’i’. The program predefines a variable I = {0,1} on entry that can be used to generate complex
values in terms of other variables. Thus x + y*I is a valid expression but {x,y} is not. The real and imaginary
components of complex value z can be extracted as real(z) and imag(z). The modulus is given by abs(z). The
phase angle is given by arg(z).

0
Real(z)

0
Imag(z)

E0(z)

-π

phase

π

Gnuplot’s 2D and 3D plot styles expect real values; to plot
a complex-valued function f(z) with non-zero imaginary
components you must plot the real or imaginary compo-
nent, or the modulus or phase. For example to represent
themodulus and phase of a function f(z) with complex ar-
gument and complex result it is possible to use the height
of the surface to represent modulus and use the color to
represent the phase. It is convenient to use a color palette
in HSV space with component H (hue), running from 0
to 1, mapped to the range of the phase returned by arg(z),
[-π:π], so that the color wraps when the phase angle does. By default this would be at H = 0 (red). You can
change this with the start keyword in set palette so that some other value of H is mapped to 0. The example
shown starts and wraps at H = 0.3 (green). See set palette defined (p. 242), arg (p. 44), set angles (p. 183).

set palette model HSV start 0.3 defined (0 0 1 1, 1 1 1 1)
set cbrange [-pi:pi]
set cbtics ("-π" -pi, "π" pi)
set pm3d corners2color c1
E0(z) = exp(-z)/z
I = {0,1}
splot '++' using 1:2:(abs(E0(x+I*y))):(arg(E0(x+I*y))) with pm3d

Constants

Integer constants are interpreted via the C library routine strtoll(). This means that constants beginning with
"0" are interpreted as octal, and constants beginning with "0x" or "0X" are interpreted as hexadecimal.

Floating point constants are interpreted via the C library routine atof().

Complex constants are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical con-
stants. For example, {0,1} represents ’i’ itself; {3,2} represents 3 + 2i. The curly braces are explicitly required
here. The program predefines a variable I = {0,1} on entry that can be used to avoid typing the explicit form.
For example 3 + 2*I is the same as {3,2}, with the advantage that it can be used with variable coefficient for
the imaginary component. Thus x + y*I is a valid expression but {x,y} is not.

String constants consist of any sequence of characters enclosed either in single quotes or double quotes. The
distinction between single and double quotes is important. See quotes (p. 85).

Examples:
1 -10 0xffaabb # integer constants
1.0 -10. 1e1 3.5e-1 # floating point constants
{1.2, -3.4} # complex constant
"Line 1\nLine 2" # string constant (\n is expanded to newline)
'123\na\456' # string constant (\ and n are ordinary characters)

44 gnuplot 6.1

Functions

Arguments to math functions in gnuplot can be integer, real, or complex unless otherwise noted. Functions
that accept or return angles (e.g. sin(x)) treat angle values as radians, but this may be changed to degrees using
the command set angles.

Math library and built-in functions
Function Arguments Returns (c indicates complex result)
abs(x) int or real absolute value of x, |x|
abs(x) complex length of x,

√
real(x)2 + imag(x)2

acos(x) c cos−1 x (inverse cosine)
acosh(x) c cosh−1 x (inverse hyperbolic cosine)
airy(x) real Airy function Ai(x) for real x
arg(x) complex the phase of x, −π ≤arg(x)≤ π
asin(x) c sin−1 x (inverse sin)
asinh(x) c sinh−1 x (inverse hyperbolic sin)
atan(x) c tan−1 x (inverse tangent)
atan2(y,x) int or real tan−1(y/x) (inverse tangent)
atanh(x) c tanh−1 x (inverse hyperbolic tangent)
besj0(x) real J0 Bessel function of x in radians
besj1(x) real J1 Bessel function of x in radians
besjn(n,x) int, real Jn Bessel function of x in radians
besy0(x) real Y0 Bessel function of x in radians
besy1(x) real Y1 Bessel function of x in radians
besyn(n,x) int, real Yn Bessel function of x in radians
besi0(x) real Modified Bessel function of order 0, x in radians
besi1(x) real Modified Bessel function of order 1, x in radians
besin(n,x) int, real Modified Bessel function of order n, x in radians
cbrt(x) real cube root of x (domain and range both limited to real)
ceil(x) dxe, smallest integer not less than the real part of x
conj(x) complex c complex conjugate of x
cos(x) c cosx, cosine of x
cosh(x) c coshx, hyperbolic cosine of x in radians
EllipticK(k) real k ∈ (-1:1) K(k) complete elliptic integral of the first kind
EllipticE(k) real k ∈ [-1:1] E(k) complete elliptic integral of the second kind
EllipticPi(n,k) real n<1, real k ∈ (-1:1) Π(n, k) complete elliptic integral of the third kind
erf(x) erf(real(x)), error function of real(x)
erfc(x) erfc(real(x)), 1.0 - error function of real(x)
exp(x) c ex, exponential function of x
expint(n,x) int n ≥ 0, real x ≥ 0 En(x) =

∫∞
1 t−ne−xt dt, exponential integral of x

floor(x) bxc, largest integer not greater than the real part of x
gamma(x) Γ(x), gamma function of real(x)
ibeta(a,b,x) a, b > 0, x ∈ [0 : 1] B(a, b, x) = Γ(a+b)

Γ(a)Γ(b)

∫ x
0 ta−1(1− t)b−1dt, incomplete beta

inverf(x) inverse error function of real(x)
igamma(a,z) complex, <(a) > 0 c incomplete gamma function P (a, z) = 1

Γ(z)

∫ z
0 ta−1e−tdt

imag(x) complex imaginary part of x as a real number

gnuplot 6.1 45

Math library and built-in functions
Function Arguments Returns (c indicates complex result)
int(x) real integer part of x, truncated toward zero
invnorm(x) inverse normal distribution function of real(x)
invibeta(a,b,p) real inverse incomplete beta function
invigamma(a,p) real inverse incomplete gamma function
LambertW(z,k) complex, int c kth branch of complex Lambert W function
lambertw(x) real principal branch (k=0) of Lambert W function
lgamma(x) real lnΓ(x) for real x
lnGamma(x) complex c lnΓ(x) valid over entire complex plane
log(x) c loge x, natural logarithm (base e) of x
log10(x) c log10 x, logarithm (base 10) of x
norm(x) normal distribution (Gaussian) function of real(x)
rand(x) int pseudo random number in the open interval (0:1)
real(x) real part of x
round(x) bxe, integer nearest to the real part of x
sgn(x) 1 if x > 0, -1 if x < 0, 0 if x = 0. imag(x) ignored
Sign(x) complex c 0 if x = 0, otherwise x/|x|
sin(x) c sinx, sine of x
sinh(x) c sinhx, hyperbolic sine of x in radians
sqrt(x) c

√
x, square root of x

SynchrotronF(x) real F (x) = x
∫∞
x K 5

3
(ν) dν

tan(x) c tanx, tangent of x
tanh(x) c tanhx, hyperbolic tangent of x in radians
uigamma(a,x) real, real upper incomplete gamma function Q(a, x) = 1

Γ(x)

∫∞
x ta−1e−tdt

voigt(x,y) real Voigt/Faddeeva function y
π

∫ exp(−t2)
(x−t)2+y2

dt

Note: voigt(x, y) = real(faddeeva(x+ iy))
zeta(s) complex c Riemann zeta function ζ(s) = Σ∞

k=1k
−s

Special functions from libcerf (only if available)
Function Arguments Returns (c indicates complex result)

cerf(z) complex c complex error function cerf(z) =
√
π
2

∫ z
0 e−t2dt

cdawson(z) complex c complex extension of Dawson’s integral D(z) =
√
π
2 e−z2erfi(z)

faddeeva(z) complex c scaled complex complementary error function w(z) = e−z2 erfc(−iz)
erfi(x) real imaginary error function erf(x) = −i ∗ erf(ix)
FresnelC(x) real Fresnel integral C(x) =

∫ x
0 cos(

π
2 t

2)dt
FresnelS(x) real Fresnel integral S(x) =

∫ x
0 sin(

π
2 t

2)dt
VP(x,σ,γ) real Voigt profile V P (x, σ, γ) =

∫∞
−∞G(x′;σ)L(x− x′; γ)dx′

VP_fwhm(σ,γ) real Voigt profile full width at half maximum value

46 gnuplot 6.1

Complex special functions from Amos library (only if available)
Function Arguments Returns (c indicates complex result)

Ai(z) complex c complex Airy function Ai(z)
Bi(z) complex c complex Airy function Bi(z)

BesselH1(nu,z) real, complex c H
(1)
ν (z) Hankel function of the first kind

BesselH2(nu,z) real, complex c H
(2)
ν (z) Hankel function of the second kind

BesselJ(nu,z) real, complex c Jν(z) Bessel function of the first kind
BesselY(nu,z) real, complex c Yν(z) Bessel function of the second kind
BesselI(nu,z) real, complex c Iν(z) modified Bessel function of the first kind
BesselK(nu,z) real, complex c Kν(z) modified Bessel function of the second kind
expint(n,z) int n ≥ 0, complex z c En(z) =

∫∞
1 t−ne−zt dt, exponential integral

String functions
Function Arguments Returns
gprintf(”format”,x) any string result from applying gnuplot’s format parser
sprintf(”format”,x,...) multiple string result from C-language sprintf
strlen(”string”) string number of characters in string
strstrt(”string”,”key”) strings int index of first character of substring ”key”
substr(”string”,beg,end) multiple string ”string”[beg:end]
split(”string”,”sep”) string array of substrings
join(array,”sep”) array,string concatenate array elements into a string
strftime(”timeformat”,t) any string result from applying gnuplot’s time parser
strptime(”timeformat”,s) string seconds since year 1970 as given in string s
system(”command”) string string containing output stream of shell command
trim(” string ”) string string without leading or trailing whitespace
word(”string”,n) string, int returns the nth word in ”string”
words(”string”) string returns the number of words in ”string”

gnuplot 6.1 47

Time functions
Function Arguments Returns
time(x) any the current system time in seconds
timecolumn(N,”timeformat”) int, string formatted time data from column N of input
tm_hour(t) time in sec the hour (0..23)
tm_mday(t) time in sec the day of the month (1..31)
tm_min(t) time in sec the minute (0..59)
tm_mon(t) time in sec the month (0..11)
tm_sec(t) time in sec the second (0..59)
tm_wday(t) time in sec the day of the week (Sun..Sat) as (0..6)
tm_week(t) time in sec week of year in ISO8601 ”week date” system (1..53)
tm_yday(t) time in sec the day of the year (0..365)
tm_year(t) time in sec the year
weekdate_iso(year,week,day) int time corresponding to ISO 8601 standard week date
weekdate_cdc(year,week,day) int time corresponding to CDC epidemiological week date

other gnuplot functions
Function Arguments Returns
column(x) int or string numerical value of column x during datafile input
columnhead(x) int string containing first entry of column x in datafile.
exists(”X”) string returns 1 if a variable named X is defined, 0 otherwise.
hsv2rgb(h,s,v) h,s,v ∈ [0:1] 24bit RGB color value.
index(A,x) array, any integer i such that A[i] = x. 0 if no match.
palette(z) real 24 bit RGB palette color mapped to z.
rgbcolor(”name”) string 32bit ARGB color from name or string representation.
stringcolumn(x) int or string content of column x as a string
valid(x) int test validity of column x during datafile input
value(”name”) string returns the value of the named variable.
voxel(x,y,z) real value of the active grid voxel containing point (x,y,z)

Integer conversion functions (int floor ceil round)

Gnuplot integer variables are stored with 64 bits of precision if that is supported by the platform.

Gnuplot complex and real variables are on most platforms stored in IEEE754 binary64 (double) floating point
representation. Their precision is limited to 53 bits, corresponding to roughly 16 significant digits.

Therefore integers with absolute value larger than 2^53 cannot be uniquely represented in a floating point
variable. I.e. for large N the operation int(real(N)) may return an integer near but not equal to N.

Furthermore, functions that convert from a floating point value to an integer by truncation may not yield the
expected value if the operation depends on more than 15 significant digits of precision even if the magnitude is
small. For example int(log10(0.1)) returns 0 rather than -1 because the floating point representation is equivalent
to -0.999999999999999... See also overflow (p. 239).

int(x) returns the integer part of its argument, truncated toward zero. If |x| > 2^63, i.e. too large to represent
as an integer, NaN is returned. If |x| > 2^52 the return value will lie within a range of neighboring integers
that cannot be distinguished due to limited floating point precision. See integer conversion (p. 47).

48 gnuplot 6.1

floor(x) returns the largest integer not greater than the real part of x. If |x| > 2^52 the true value cannot be
uniquely determined; in this case the return value is NaN. See integer conversion (p. 47).

ceil(x) returns the smallest integer not less than the real part of x. If |x| > 2^52 the true value cannot be
uniquely determined; in this case the return value is NaN. See integer conversion (p. 47).

round(x) returns the integer nearest to the real part of x. If |x| > 2^52 the true value cannot be uniquely
determined; in this case the return value is NaN. See integer conversion (p. 47).

Elliptic integrals

The EllipticK(k) function returns the complete elliptic integral of the first kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k^2*sin^2(θ))^(-0.5). The domain of k is -1 to 1 (exclusive).

EllipticK(k) =
∫ π/2
0

√
1− k2 sin2 θ

−1
dθ

The EllipticE(k) function returns the complete elliptic integral of the second kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k^2*sin^2(θ))^0.5. The domain of k is -1 to 1 (inclusive).

EllipticE(k) =
∫ π/2
0

√
1− k2 sin2 θ dθ

The EllipticPi(n,k) function returns the complete elliptic integral of the third kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k^2*sin^2(θ))^(-0.5) / (1 - n*sin^2(θ)). The parameter nmust be less
than 1, while k must lie between -1 and 1 (exclusive). Note that by definition EllipticPi(0,k) == EllipticK(k)
for all possible values of k.

EllipticPi(n, k) =
∫ π/2
0 [(1− n sin2 θ)

√
1− k2 sin2 θ]

−1
dθ

Elliptic integral algorithm: B.C.Carlson 1995, Numerical Algorithms 10:13-26.

Complex Airy functions

Ai(z) and Bi(z) are the Airy functions of complex argument z, computed in terms of the modified Bessel
functions K and I. Supported via an external library containing routines by Donald E. Amos, Sandia National
Laboratories, SAND85-1018 (1985).

Ai(z) = 1
π

√
z
3K1/3(ζ) ζ = 2

3z
3/2

Bi(z) =
√

z
3 [I−1/3(ζ) + I1/3(ζ)]

Complex Bessel functions

BesselJ(nu,z) is the Bessel function of the first kind J_nu for real argument nu and complex argument z.
Supported via external library containing routines byDonald E. Amos, Sandia National Laboratories, SAND85-
1018 (1985).

BesselY(nu,z) is the Bessel function of the second kind Y_nu for real argument nu and complex argument z.
Supported via external library containing routines byDonald E. Amos, Sandia National Laboratories, SAND85-
1018 (1985).

BesselI(nu,z) is the modified Bessel function of the first kind I_nu for real argument nu and complex argu-
ment z. Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories,
SAND85-1018 (1985).

gnuplot 6.1 49

BesselK(nu,z) is the modified Bessel function of the second kind K_nu for real argument nu and complex argu-
ment z. Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories,
SAND85-1018 (1985).

BesselH1(nu,z) and BesselH2(nu,z) are the Hankel functions of the first and second kind
H1(nu,z) = J(nu,z) + iY(nu,z)
H2(nu,z) = J(nu,z) - iY(nu,z)

for real argument nu and complex argument z. Supported via external library containing routines by Donald E.
Amos, Sandia National Laboratories, SAND85-1018 (1985).

Expint

expint(n,z) returns the exponential integral of order n, where n is an integer >= 0. This is the integral from 1
to infinity of t^(-n) e^(-tz) dt.

En(x) =
∫∞
1 t−ne−xt dt

If your copy of gnuplot was built with support for complex functions from the Amos library, then for n>0 the
evaluation uses Amos routine cexint [Amos 1990 Algorithm 683, ACM Trans Math Software 16:178]. In this
case z may be any complex number with -pi < arg(z) <= pi. expint(0,z) is calculated as exp(-z)/z.

If Amos library support is not present, z is limited to real values z >= 0.

Fresnel integrals FresnelC(x) and FresnelS(x)

The cosine and sine Fresnel integrals are calculated using their relationship to the complex error function erf(z).
Due to dependence on erf(z), these functions are only available if libcerf library support is present.

C(x) =
∫ x
0 cos(

π
2 t

2)dt S(x) =
∫ x
0 sin(

π
2 t

2)dt

C(x) + iS(x) = 1+i
2 erf(z) where z =

√
π
2 (1− i)x

Gamma

gamma(x) returns the gamma function of the real part of its argument. For integer n, gamma(n+1) = n!. If
the argument is a complex value, the imaginary component is ignored. For complex arguments see lnGamma
(p. 50).

Igamma

igamma(a, z) returns the lower incomplete gamma function P(a, z), [Abramowitz and Stegun (6.5.1); NIST
DLMF 8.2.4]. If complex function support is present a and z may be complex values; real(a) > 0; For the
complementary upper incomplete gamma function, see uigamma (p. 53).

igamma(a, z) = P (a, z) = zaγ∗(a, z) = 1
Γ(z)

∫ z
0 ta−1e−tdt

One of four algorithms is used depending on a and z.
Case (1) When a is large (>100) and (z-a)/a is small (<0.2) use Gauss-Legendre quadrature with coefficients
from Numerical Recipes 3rd Edition section 6.2, Press et al (2007).
Case (2) When z > 1 and z > (a+2) use a continued fraction following Shea (1988) J. Royal Stat. Soc. Series

50 gnuplot 6.1

C (Applied Statistics) 37:466-473.
Case (3) When z < 0 and a < 75 and imag(a) == 0 use the series from Abramowitz & Stegun (6.5.29).
Otherwise (Case 4) use Pearson’s series expansion.

Note that convergence is poor in some regions of the full domain. If the chosen algorithm does not converge
to within 1.E-14 the function returns NaN and prints a warning.

If no complex function support is present the domain is limited to real arguments a > 0, z >= 0.

Invigamma

The inverse incomplete gamma function invigamma(a,p) returns the value z such that p = igamma(a,z). p is
limited to (0;1]. a must be a positive real number. The implementation in gnuplot has relative accuracy that
ranges from 1.e-16 for a<1 to 5.e-6 for a = 1.e10. Convergence may fail for a < 0.005.

Ibeta

ibeta(a,b,x) returns the normalized lower incomplete beta integral of real arguments a,b > 0, x in [0:1].

ibeta(a, b, x) = Γ(a+b)
Γ(a)Γ(b)

∫ x
0 ta−1(1− t)b−1dt

If the arguments are complex, the imaginary components are ignored. The implementation in gnuplot uses code
from the Cephes library [Moshier 1989, "Methods and Programs forMathematical Functions", Prentice-Hall].

Invibeta

The inverse incomplete beta function invibeta(a,b,p) returns the value z such that p = ibeta(a,b,z). a, b are
limited to positive real values and p is in the interval [0,1]. Note that as a, b approach zero (≲0.05) invibeta()
approaches 1.0 and its relative accuracy is limited by floating point precision.

LambertW

Lambert W function with complex domain and range. LambertW(z, k) returns the kth branch of the function
W defined by the equation W(z) * exp(W(z)) = z. The complex value is obtained using Halley’s method as
described by Corless et al [1996], Adv. Comp. Math 5:329. The nominal precision is 1.E-13 but convergence
can be poor very close to discontinuities, e.g. branch points.

LnGamma

lnGamma(z) returns the natural log of the gamma function with complex domain and range. Implemented
using 14 term approximation following Lanczos [1964], SIAM JNA 1:86-96. The imaginary component of
the result is phase-shifted to yield a continuous surface everywhere except the negative real axis.

Random number generator

The function rand() produces a sequence of pseudo-random numbers between 0 and 1 using an algorithm
from P. L’Ecuyer and S. Cote, "Implementing a random number package with splitting facilities", ACM
Transactions on Mathematical Software, 17:98-111 (1991).

gnuplot 6.1 51

rand(0) returns a pseudo random number in the open interval (0:1)
generated from the current value of two internal
32-bit seeds.

rand(-1) resets both seeds to a standard value.
rand(x) for integer 0 < x < 2^31-1 sets both internal seeds

to x.
rand({x,y}) for integer 0 < x,y < 2^31-1 sets seed1 to x and

seed2 to y.

Special functions with complex arguments

Some special functions with complex domain are provided through external libraries. If your copy of gnuplot
was not configured to link against these libraries then it will support only the real domain or will not provide
the function at all.

Functions requiring libcerf (http://apps.jcns.fz-juelich.de/libcerf) depend on configuration option –with-
libcerf. This is the default. See cerf (p. 45), cdawson (p. 45), faddeeva (p. 45), erfi (p. 45), VP (p. 45), and
VP_fwhm (p. 45).

Complex Airy, Bessel, and Hankel functions of real order nu and complex arguments require a li-
brary containing routines implemented by Douglas E. Amos, Sandia National Laboratories, SAND85-
1018 (1985). These routines may be found in netlib (http://netlib.sandia.gov) or in libopenspec-
fun (https://github.com/JuliaLang/openspecfun). The corresponding configuration option is –with-
amos=<library directory>. See Ai (p. 48), Bi (p. 48), BesselJ (p. 48), BesselY (p. 48), BesselI (p. 48),
BesselK (p. 48), Hankel (p. 49). The complex exponential integral is provided by netlib or libamos but not
by libopenspecfun. See expint (p. 49).

Synchrotron function

The synchrotron function SynchrotronF(x) describes the power distribution spectrum of synchrotron radiation
as a function of x given in units of the critical photon energy (i.e. critical frequency vc).

F (x) = x
∫∞
x K5/3(ν) dν whereK5/3 is a modified Bessel function of the second kind.

Chebyshev coefficients for approximation accurate to 1.E-15 are taken from MacLead (2000)
NuclInstMethPhysRes A443:540-545.

Time functions

Time The time(x) function returns the current system time. This value can be converted to a date string with
the strftime function, or it can be used in conjunction with timecolumn to generate relative time/date plots.
The type of the argument determines what is returned. If the argument is an integer, time() returns the current
time as an integer, in seconds from the epoch date, 1 Jan 1970. If the argument is real (or complex), the result
is real as well. If the argument is a string, it is assumed to be a format and it is passed to strftime to provide a
formatted time string. See also time_specifiers (p. 207) and timefmt (p. 271).

Timecolumn timecolumn(N,"timeformat") reads string data starting at column N as a time/date value
and uses "timeformat" to interpret this as "seconds since the epoch" to millisecond precision. If no format
parameter is given, the format defaults to the string from set timefmt. This function is valid only in the using
specification of a plot or stats command. See plot datafile using (p. 167).

52 gnuplot 6.1

Tm_structure Gnuplot stores time internally as a 64-bit floating point value representing seconds since the
epoch date 1 Jan 1970. In order to interpret this as a time or date it is converted to or from a POSIX standard
structure struct_tm. Note that fractional seconds, if any, cannot be retrieved via tm_sec(). The components
may be accessed individually using the functions

• tm_hour(t) integer hour in the range 0–23
• tm_mday(t) integer day of month in the range 1–31
• tm_min(t) integer minute in the range 0–59
• tm_mon(t) integer month of year in the range 0–11
• tm_sec(t) integer second in the range 0–59
• tm_wday(t) integer day of the week in the range 0 (Sunday)–6(Saturday)
• tm_yday(t) integer day of the year the range 0–365
• tm_year(t) integer year

Tm_week The tm_week(t, standard) function interprets its first argument t as a time in seconds from 1 Jan
1970. Despite the name of this function it does not report a field from the POSIX tm structure.

If standard = 0 it returns the week number in the ISO 8601 "week date" system. This corresponds to gnuplot’s
%W time format. If standard = 1 it returns the CDC epidemiological week number ("epi week"). This
corresponds to gnuplot’s %U time format. For corresponding inverse functions that convert week dates to
calendar time see weekdate_iso (p. 52), weekdate_cdc (p. 53).

In brief, ISO Week 1 of year YYYY begins on the Monday closest to 1 Jan YYYY. This may place it in the
previous calendar year. For example Tue 30 Dec 2008 has ISO week date 2009-W01-2 (2nd day of week 1
of 2009). Up to three days at the start of January may come before the Monday of ISO week 1; these days are
assigned to the final week of the previous calendar year. E.g. Fri 1 Jan 2021 has ISO week date 2020-W53-5.

The US Center for Disease Control (CDC) epidemiological week is a similar week date convention that differs
from the ISO standard by defining a week as starting on Sunday, rather than on Monday.

Weekdate_iso Syntax:
time = weekdate_iso(year, week [, day])

This function converts from the year, week, day components of a date in ISO 8601 "week date" format to the
calendar date as a time in seconds since the epoch date 1 Jan 1970. Note that the nominal year in the week
date system is not necessarily the same as the calendar year. The week is an integer from 1 to 53. The day
parameter is optional. If it is omitted or equal to 0 the time returned is the start of the week. Otherwise day
is an integer from 1 (Monday) to 7 (Sunday). See tm_week (p. 52) for additional information on an inverse
function that converts from calendar date to week number in the ISO standard convention.

Example:
Plot data from a file with column 1 containing ISO weeks
Week cases deaths
2020-05 432 1
calendar_date(w) = weekdate_iso(int(w[1:4]), int(w[6:7]))
set xtics time format "%b\n%Y"
plot FILE using (calendar_date(strcol(1))) : 2 title columnhead

gnuplot 6.1 53

Weekdate_cdc Syntax:

time = weekdate_cdc(year, week [, day])

This function converts from the year, week, day components of a date in the CDC/MMWR "epi week" format
to the calendar date as a time in seconds since the epoch date 1 Jan 1970. The CDC week date convention
differs from the ISO week date in that it is defined in terms of each week running from day 1 = Sunday to day
7 = Saturday. If the third parameter is 0 or is omitted, the time returned is the start of the week. See tm_week
(p. 52) and weekdate_iso (p. 52).

Uigamma

uigamma(a, x) returns the regularized upper incomplete gamma function Q(a, x), NIST DLMF eq 8.2.4 For
the complementary lower incomplete gamma function P(a,x), see igamma (p. 49).
Q(a, x) + P(a, x) = 1.

uigamma(a, z) = Q(a, x) = 1− P (a, x) = 1
Γ(z)

∫∞
x ta−1e−tdt

The current implementation is from the Cephes library (Moshier 2000). The domain is restricted to real a>0,
real x>=0. EXPERIMENTAL: To be replaced by an implementation that handles complex arguments.

Using specifier functions

These functions are valid only in the context of data input. Usually this means use in an expression that provides
an input field of the using specifier in a plot, splot, fit, or stats command. However the scope of the functions
is actually the full clause of the plot command, including for example use of columnhead in constructing the
plot title.

Column The column(x) function may be used only in the using specifier of a plot, splot, fit, or stats com-
mand. It evaluates to the numerical value of the content of column x. If the column is expected to hold a string,
use instead stringcolumn(x) or timecolumn(x, "timeformat"). See plot datafile using (p. 167), stringcolumn
(p. 53), timecolumn (p. 51).

Columnhead The columnhead(x) function may only be used as part of a plot, splot, or stats command. It
evaluates to a string containing the content of column x in the first line of a data file. This is typically used to
extract the column header for use in a plot title. See plot datafile using (p. 167). Example:

set datafile columnheader
plot for [i=2:4] DATA using 1:i title columnhead(i)

Stringcolumn The stringcolumn(x) function may be used only in the using specification of a data plot or
fit command. It returns the content of column x as a string. strcol(x) is shorthand for stringcolumn(x). If the
string is to be interpreted as a time or date, use instead timecolumn(x, "timeformat"). See plot datafile using
(p. 167).

54 gnuplot 6.1

Valid The valid(x) function may be used only in expressions that are part of a using specification. It can be
used to detect explicit NaN values or unexpected garbage in a field of the input stream, perhaps to substitute a
default value or to prevent further arithmetic operations using NaN. Both "missing" and NaN (not-a-number)
data values are considered to be invalid, but it is important to note that if the program recognizes that a field
is truly missing or contains a "missing" flag then the input line is discarded before the expression invoking
valid() would be called. See plot datafile using (p. 167), missing (p. 197).

Example:
Treat an unrecognized bin value as contributing some constant
prior expectation to the bin total rather than ignoring it.
plot DATA using 1 : (valid(2) ? $2 : prior) smooth unique

Value

B = value("A") is effectively the same as B = A, where A is the name of a user-defined variable. This is useful
when the name of the variable is itself held in a string variable. See user-defined variables (p. 58). It also
allows you to read the name of a variable from a data file. If the argument is a numerical expression, value()
returns the value of that expression. If the argument is a string that does not correspond to a currently defined
variable, value() returns NaN.

Counting and extracting words

word("string",n) returns the nth word in string. For example, word("one two three",2) returns the string
"two".

words("string") returns the number of words in string. For example, words(" a b c d") returns 4.

The word and words functions provide limited support for quoted strings, both single and double quotes can
be used:

print words("\"double quotes\" or 'single quotes'") # 3

A starting quote must either be preceded by a white space, or start the string. This means that apostrophes in
the middle or at the end of words are considered as parts of the respective word:

print words("Alexis' phone doesn't work") # 4

Escaping quote characters is not supported. If you want to keep certain quotes, the respective section must be
surrounded by the other kind of quotes:

s = "Keep \"'single quotes'\" or '\"double quotes\"'"
print word(s, 2) # 'single quotes'
print word(s, 4) # "double quotes"

Note, that in this last example the escaped quotes are necessary only for the string definition.

split("string", "sep") uses the character sequence in "sep" as a field separator to split the content of "string"
into individual fields. It returns an array of strings, each corresponding to one field of the original string. The
second parameter "sep" is optional. If "sep" is omitted or if it contains a single space character the fields
are split by any amount of whitespace (space, tab, formfeed, newline, return). Otherwise the full sequence of
characters in "sep" must be matched.

The three examples below each produce an array ["A", "B", "C", "D"]

gnuplot 6.1 55

t1 = split("A B C D")
t2 = split("A B C D", " ")
t3 = split("A;B;C;D", ";")

However the command

t4 = split("A;B; C;D", "; ")

produces an array containing only two strings ["A;B", "C;D"] because the two-character field separator
sequence "; " is found only once.

Note: Breaking the string into an array of single characters using an empty string for sep is not currently
implemneted. You can instead accomplish this using single character substrings: Array[i] = "string"[i:i]

join(array, "sep") concatenates the string elements of an array into a single string containing fields delimited
by the character sequence in "sep". Non-string array elements generate an empty field. The complementary
operation split break extracts fields from a string to create an array. Example:

array A = ["A", "B", , 7, "E"]
print join(A,";")

A;B;;;E

trim(" padded string ") returns the original string stripped of leading and trailing whitespace. This is useful
for string comparisons of input data fields that may contain extra whitespace. For example

plot FOO using 1:(trim(strcol(3)) eq "A" ? $2 : NaN)

Zeta

zeta(s) is the Riemann zeta function with complex domain and range. ζ(s) = Σ∞
k=1k

−s

This implementation uses the polynomial series described in algorithm 3 of P. Borwein [2000] Canadian
Mathematical Society Conference Proceedings. The nominal precision is 1.e-16 over the complex plane.
However note that this does not guarantee that non-trivial zeros of the zeta function will evaluate exactly to
0.

Operators

The operators in gnuplot are the same as the corresponding operators in the C programming language, ex-
cept that all operators accept integer, real, and complex arguments, unless otherwise noted. The ** operator
(exponentiation) is supported, as in FORTRAN.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used to change
the order of operation. Thus -2**2 = -4, but (-2)**2 = 4.

Unary

The following is a list of all the unary operators:

56 gnuplot 6.1

Unary Operators
Symbol Example Explanation
- -a unary minus
+ +a unary plus (no-operation)
~ ~a * one’s complement
! !a * logical negation
! a! * factorial
$ $3 * data column in ‘using‘ specifier
| |A| cardinality of array A

(*) Starred explanations indicate that the operator requires an integer argument.

The factorial operator returns an integer when N! is sufficiently small (N <= 20 for 64-bit integers). It returns
a floating point approximation for larger values of N.

The cardinality operator |...| returns the number of elements |A| in array A. It returns the number of data lines
|$DATA| when applied to datablock $DATA.

Binary

The following is a list of all the binary operators:

Binary Operators
Symbol Example Explanation
** a**b exponentiation
* a*b multiplication
/ a/b division
% a%b * modulo
+ a+b addition
- a-b subtraction
== a==b equality
!= a!=b inequality
< a<b less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
<< 0xff<<1 left shift unsigned
>> 0xff>>1 right shift unsigned
& a&b * bitwise AND
^ a^b * bitwise exclusive OR
| a|b * bitwise inclusive OR
&& a&&b * logical AND
|| a||b * logical OR
= a = b assignment
, (a,b) serial evaluation
. A.B string concatenation
eq A eq B string equality
ne A ne B string inequality

gnuplot 6.1 57

(*) Starred explanations indicate that the operator requires integer arguments. Capital letters A and B indicate
that the operator requires string arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C. That is, the second && operand is not
evaluated if the first is false; the second || operand is not evaluated if the first is true.
Serial evaluation occurs only in parentheses and is guaranteed to proceed in left to right order. The value of
the rightmost subexpression is returned.

Ternary

There is a single ternary operator:

Ternary Operator
Symbol Example Explanation
?: a?b:c ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is evaluated.
If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the third argument (c) is
evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only when
certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <= x < 1, 1/x for 1 <= x < 2, and undefined elsewhere:
f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 ? 1/x : 1/0
plot f(x)

Note that gnuplot quietly ignores undefined values when plotting, so the final branch of the function (1/0) will
produce no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity
if a line style is used. To plot it discontinuously, create separate functions for the two pieces.

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but only if the
datum in column 4 is non-negative:

plot 'file' using 1:($4<0 ? 1/0 : ($2+$3)/2)

For an explanation of the using syntax, please see plot datafile using (p. 167).

Summation and cumulative product

Gnuplot provides operators for iterative sum (Σ) and iterative product (Π).∑max
i=min f(i) and

∏max
i=min f(i)

A summation expression has the form
sum [<var> = <start> : <end>] <expression>

<var> is treated as an integer variable that takes on successive integral values from <start> to <end>. For
each of these, the current value of <expression> is added to a running total whose final value becomes the
value of the summation expression. Examples:

58 gnuplot 6.1

print sum [i=1:10] i
55.

Equivalent to plot 'data' using 1:($2+$3+$4+$5+$6+...)
plot 'data' using 1 : (sum [col=2:MAXCOL] column(col))

It is not necessary that <expression> contain the variable <var>. Although <start> and <end> can be
specified as variables or expressions, their value cannot be changed dynamically as a side-effect of carrying out
the summation. If <end> is less than <start> then the value of the summation is zero.

The equivalent expression for an iterative product has the form
prod [<var> = <start> : <end>] <expression>

Thus
N! == prod [i=1:N] i

If <end> is less than <start> then no iteration is performed and the value is returned as 1.0.

Gnuplot-defined variables

Gnuplot maintains a number of read-only variables that reflect the current internal state of the program and
the most recent plot. These variables begin with the prefix "GPVAL_". Examples include GPVAL_TERM,
GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN. Type show variables all to display the complete list
and current values. Values related to axes parameters (ranges, log base) are values used during the last plot,
not those currently set.

Example: To calculate the fractional screen coordinates of the point [X,Y]
GRAPH_X = (X - GPVAL_X_MIN) / (GPVAL_X_MAX - GPVAL_X_MIN)
GRAPH_Y = (Y - GPVAL_Y_MIN) / (GPVAL_Y_MAX - GPVAL_Y_MIN)
SCREEN_X = GPVAL_TERM_XMIN + GRAPH_X * (GPVAL_TERM_XMAX - GPVAL_TERM_XMIN)
SCREEN_Y = GPVAL_TERM_YMIN + GRAPH_Y * (GPVAL_TERM_YMAX - GPVAL_TERM_YMIN)
FRAC_X = SCREEN_X * GPVAL_TERM_SCALE / GPVAL_TERM_XSIZE
FRAC_Y = SCREEN_Y * GPVAL_TERM_SCALE / GPVAL_TERM_YSIZE

The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot command terminates early
due to an error. The most recent error message is stored in the string variable GPVAL_ERRMSG. Both
GPVAL_ERRNO and GPVAL_ERRMSG can be cleared using the command reset errors.

Interactive terminals with mouse functionality maintain read-only variables with the prefix "MOUSE_". See
mouse variables (p. 79) for details.

The fitmechanism uses several variables with names that begin "FIT_". It is safest to avoid using such names.
When using set fit errorvariables, the error for each fitted parameter will be stored in a variable named like
the parameter, but with "_err" appended. See the documentation on fit (p. 133) and set fit (p. 203) for details.

See user-defined variables (p. 58), reset errors (p. 181), mouse variables (p. 79), and fit (p. 133).

User-defined variables and functions

New user-defined variables and functions of one through twelve variables may be declared and used anywhere,
including on the plot command itself.

User-defined function syntax:
<func-name>(<dummy1> {,<dummy2>} ... {,<dummy12>}) = <expression>

gnuplot 6.1 59

where <expression> is defined in terms of <dummy1> through <dummy12>. This form of function defini-
tion is limited to a single line. More complicated multi-line functions can be defined using the function block
mechanism (new in this version). See function blocks (p. 142).

User-defined variable syntax:
<variable-name> = <constant-expression>

Examples:
w = 2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (t > 0) ? t : 0
min(a,b) = (a < b) ? a : b
comb(n,k) = n!/(k!*(n-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)

file = "mydata.inp"
file(n) = sprintf("run_%d.dat",n)

The final two examples illustrate a user-defined string variable and a user-defined string function.

Variables pi (3.14159...), Inf (INFINITY), and NaN (IEEE "Not a Number") are defined at program entry.
You can redefine these to something else if you really need to. The original values can be recovered by reset
session or by setting:

pi = GPVAL_pi; Inf = GPVAL_Inf; NaN = GPVAL_NaN

Other variables may be defined under various gnuplot operations like mousing in interactive terminals or fitting;
see gnuplot-defined variables (p. 58) for details.

You can check for existence of a given variable V by the exists("V") expression. For example
a = 10
if (exists("a")) print "a is defined"
if (!exists("b")) print "b is not defined"

Valid names are the same as in most programming languages: they must begin with a letter, but subsequent
characters may be letters, digits, or "_".

Each function definition is made available as a special string-valued variable with the prefix ’GPFUN_’.

Example:
set label GPFUN_sinc at graph .05,.95

See show functions (p. 292), functions (p. 171), gnuplot-defined variables (p. 58), macros (p. 84), value
(p. 54).

Arrays

Arrays are implemented as indexed lists of user variables. The elements in an array are not limited to a single
type of variable. Arrays must be created explicitly before being referenced. The size of an array cannot be
changed after creation. Array elements are initially undefined unless they are provided in the array declaration.
In most places an array element can be used instead of a named user variable.

The cardinality (number of elements) of array A is given by the expression |A|.
Examples:

60 gnuplot 6.1

array A[6]
A[1] = 1
A[2] = 2.0
A[3] = {3.0, 3.0}
A[4] = "four"
A[6] = A[2]**3
array B[6] = [1, 2.0, A[3], "four", , B[2]**3]
array C = split("A B C D E F")

do for [i=1:6] { print A[i], B[i] }
1 1
2.0 2.0
{3.0, 3.0} {3.0, 3.0}
four four
<undefined> <undefined>
8.0 8.0

Note: Arrays and variables share the same namespace. For example, assignment of a string to a variable named
FOO will destroy any previously created array with name FOO.

The name of an array can be used in a plot, splot, fit, or stats command. This is equivalent to providing a file
in which column 1 holds the array index (from 1 to size), column 2 holds the value of real(A[i]) and column 3
holds the value of imag(A[i]).

Example:
array A[200]
do for [i=1:200] { A[i] = sin(i * pi/100.) }
plot A title "sin(x) in centiradians"

When plotting the imaginary component of complex array values, it may be referenced either as imag(A[$1])
or as $3. These two commands are equivalent

plot A using (real(A[$1])) : (imag(A[$1]))
plot A using 2:3

Array functions

Starting with gnuplot version 6, an array can be passed to a function or returned by a function. For example a
simple dot-product function acting on two equal-sized numerical arrays could be defined:

dot(A,B) = (|A| != |B|) ? NaN : sum [i=1:|A|] A[i] * B[i]

Built-in functions that return an array include the slice operation array[min:max] and the index retrieval function
index(Array,value).

T = split("A B C D E F")
U = T[3:4]
print T

["A", "B", "C", "D", "E", "F"]
print U

["C", "D"]
print index(T, "D")

4

Note that T and U in this example are now arrays, whether or not they had been previously declared.

gnuplot 6.1 61

Array indexing

Array indices run from 1 to N for an array with N elements. Element i of array A is accessed by A[i]. The built-
in function index(Array, <value>) returns an integer i such that A[i] is equal to <value>, where <value>
may be any expression that evaluates to a number (integer, real, or complex) or a string. The array element
must match in both type and value. A return of 0 indicates that no match was found.

array A = [4.0, 4, "4"]
print index(A, 4)

2
print index(A, 2.+2.)

1
print index(A, "D4"[2:2])

3

Fonts

Gnuplot does not provide any fonts of its own. It relies on external font handling, the details of which un-
fortunately vary from one terminal type to another. Brief documentation of font mechanisms that apply to
more than one terminal type is given here. For information on font use by other individual terminals, see the
documentation for that terminal.

Although it is possible to include non-alphabetic symbols by temporarily switching to a special font, e.g. the
Adobe Symbol font, the preferred method is now to choose UTF-8 encoding and treat the symbol like any other
character. Alternatively you can specify the unicode entry point for the desired symbol as an escape sequence in
enhanced text mode. See encoding (p. 202), unicode (p. 41), locale (p. 223), and escape sequences (p. 41).

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)

Some terminals, including all the cairo-based terminals, access fonts via the fontconfig system library. Please
see the fontconfig user manual.

It is usually sufficient in gnuplot to request a font by a generic name and size, letting fontconfig substitute a
similar font if necessary. The following will probably all work:

set term pdfcairo font "sans,12"
set term pdfcairo font "Times,12"
set term pdfcairo font "Times-New-Roman,12"

Gd (png, gif, jpeg, sixel terminals)

Font handling for the png, gif, jpeg, and sixelgd terminals is done by the libgd library. At a minimum it provides
five basic fonts named tiny, small, medium, large, and giant that cannot be scaled or rotated. Use one of
these keywords instead of the font keyword. E.g.

set term png tiny

On many systems libgd can also use generic font handling provided by the fontconfig tools (see fontcon-
fig (p. 61)). On most systems without fontconfig, libgd provides access to Adobe fonts (*.pfa *.pfb) and to
TrueType fonts (*.ttf). You must give the name of the font file, not the name of the font inside it, in the form
"<face> {,<size>}". <face> is either the full pathname to the font file, or the first part of a filename in one

http://fontconfig.org/fontconfig-user.html

62 gnuplot 6.1

of the directories listed in the GDFONTPATH environmental variable. That is, ’set term png font "Face"’ will
look for a font file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. For example, if
GDFONTPATH contains /usr/local/fonts/ttf:/usr/local/fonts/pfa then the following pairs of commands are
equivalent

set term png font "arial"
set term png font "/usr/local/fonts/ttf/arial.ttf"
set term png font "Helvetica"
set term png font "/usr/local/fonts/pfa/Helvetica.pfa"

To request a default font size at the same time:
set term png font "arial,11"

If no specific font is requested in the "set term" command, gnuplot checks the environmental variable
GNUPLOT_DEFAULT_GDFONT.

Postscript (also encapsulated postscript *.eps)

PostScript font handling is done by the printer or viewing program. Gnuplot can create valid PostScript or
encapsulated PostScript (*.eps) even if no fonts at all are installed on your computer. Gnuplot simply refers to
the font by name in the output file, and assumes that the printer or viewing program will know how to find or
approximate a font by that name.

All PostScript printers or viewers should know about the standard set of Adobe fontsTimes-Roman,Helvetica,
Courier, and Symbol. It is likely that many additional fonts are also available, but the specific set depends on
your system or printer configuration. Gnuplot does not know or care about this; the output *.ps or *.eps files
that it creates will simply refer to whatever font names you request.

Thus
set term postscript eps font "Times-Roman,12"

will produce output that is suitable for all printers and viewers.

On the other hand
set term postscript eps font "Garamond-Premier-Pro-Italic"

will produce a valid PostScript output file, but since it refers to a specialized font only some printers or viewers
will be able to display the exact font that was requested. Most will substitute a different font.

However, it is possible to embed a specific font in the output file so that all printers will be able to use it. This
requires that the a suitable font description file is available on your system. Note that some font files require
specific licensing if they are to be embedded in this way. See postscript fontfile (p. 345) for more detailed
description and examples.

Glossary

As gnuplot has evolved over more than 30 years, the meaning of certain words used in commands and in the
documentation may have diverged from current common usage. This section explains how some of these terms
are used in gnuplot.

The term "terminal" refers to an output mode, not to the thing you are typing on. For example, the command
set terminal pdf means that subsequent plotting commands will produce pdf ouput. Usually you would want
to accompany this with a set output "filename" command to control where the pdf output is written.

gnuplot 6.1 63

A "page" or "screen" or "canvas" is the entire area addressable by gnuplot. On a desktop it is a full window;
on a plotter, it is a single sheet of paper.

When discussing data files, the term "record" denotes a single line of text in the file, that is, the characters
between newline or end-of-record characters. A "point" is the datum extracted from a single record. A
"block" of data is a set of consecutive records delimited by blank lines. A line, when referred to in the context
of a data file, is a subset of a block. Note that the term "data block" may also be used to refer to a named
block of inline data (see datablocks (p. 63)).

Inline data and datablocks

There are two mechanisms for embedding data into a stream of gnuplot commands. If the special filename ’-’
appears in a plot command, then the lines immediately following the plot command are interpreted as inline
data. See special-filenames (p. 166). Data provided in this way can only be used once, by the plot command
it follows.

The second mechanism defines a named data block as a here-document. The named data is persistent and may
be referred to by more than one plot command. Example:

$Mydata << EOD
11 22 33 first line of data
44 55 66 second line of data
comments work just as in a data file
77 88 99
EOD
stats $Mydata using 1:3
plot $Mydata using 1:3 with points, $Mydata using 1:2 with impulses

Data block names must begin with a $ character, which distinguishes them from other types of persistent
variables. The end-of-data delimiter (EOD in the example) may be any sequence of alphanumeric characters.

A data block definition cannot be placed inside the bracketed clause of an iteration or an if/else/while condition.

For a parallel mechanism that stores executable commands rather than data in a named block, see function
blocks (p. 142).

The storage associated with named data blocks can be released using undefine command. undefine $* frees
all named data and function blocks at once.

Iteration

1 term Fourier series

10 term Fourier series

100 term Fourier series

1000 term Fourier series

gnuplot supports command iteration and block-structured
if/else/while/do constructs. See if (p. 144), while
(p. 306), and do (p. 131). Simple iteration is possible
inside plot or set commands. See plot for (p. 174).
General iteration spanning multiple commands is possi-
ble using a block construct as shown below. For a related
new feature, see the summation (p. 57) expression type.
Here is an example using several of these new syntax fea-
tures:

set multiplot layout 2,2

64 gnuplot 6.1

fourier(k, x) = sin(3./2*k)/k * 2./3*cos(k*x)
do for [power = 0:3] {

TERMS = 10**power
set title sprintf("%g term Fourier series",TERMS)
plot 0.5 + sum [k=1:TERMS] fourier(k,x) notitle

}
unset multiplot

Iteration is controlled by an iteration specifier with syntax
for [<var> in "string of N elements"]
for [<var> = <start> : <end> { : <increment> }]

or
for [<var> in Array]

In the first case <var> is a string variable that successively evaluates to single-word substrings 1 to N of the
string in the iteration specifier. In the second case <start>, <end>, and <increment> are integers or integer
expressions.

In the third case <var> is set to successive elements of the array regardless of whether the element is a
number or a string. Any undefined array elements are silently skipperd. Iteration over array elements is
EXPERIMENTAL (details may change before it appears in a stable gnuplot release version.

The scope of the iteration variable is private to that iteration. See scope (p. 81). You cannot permanently
change the value of the iteration variable inside the iterated clause. If the iteration variable has a value prior
to iteration, that value will be retained or restored at the end of the iteration. For example, the following
commands will print 1 2 3 4 5 6 7 8 9 10 A.

i = "A"
do for [i=1:10] { print i; i=10; }
print i

Linetypes, colors, and styles

In very old gnuplot versions, each terminal type provided a set of distinct "linetypes" that could differ in color,
in thickness, in dot/dash pattern, or in some combination of color and dot/dash. These colors and patterns
were not guaranteed to be consistent across different terminal types although most used the color sequence
red/green/blue/magenta/cyan/yellow. You can select this old behaviour via the command set colorsequence
classic, but by default gnuplot now uses a terminal-independent sequence of 8 colors.

You can further customize the sequence of linetype properties interactively or in an initialization file. See set
linetype (p. 221). Several sample initialization files are provided in the distribution package.

The current linetype properties for a particular terminal can be previewed by issuing the test command after
setting the terminal type.

Successive functions or datafiles plotted by a single command will be assigned successive linetypes in the current
default sequence. You can override this for any individual function, datafile, or plot element by giving explicit
line properties in the plot command.

Examples:
plot "foo", "bar" # plot two files using linetypes 1, 2
plot sin(x) linetype 4 # use linetype color 4

gnuplot 6.1 65

In general, colors can be specified using named colors, rgb (red, green, blue) components, hsv (hue, saturation,
value) components, or a coordinate along the current pm3d palette. The keyword linecolormay be abbreviated
to lc.

Examples:
plot sin(x) lc rgb "violet" # use one of gnuplot's named colors
plot sin(x) lc rgb "#FF00FF" # explicit RGB triple in hexadecimal
plot sin(x) lc palette cb -45 # whatever color corresponds to -45

in the current cbrange of the palette
plot sin(x) lc palette frac 0.3 # fractional value along the palette

See colorspec (p. 65), show colornames (p. 291), hsv (p. 47), set palette (p. 240), cbrange (p. 291). See
also set monochrome (p. 226).

Linetypes also have an associated dot-dash pattern although not all terminal types are capable of using it. You
can specify the dot-dash pattern independent of the line color. See dashtype (p. 67).

Colorspec

Many commands allow you to specify a linetype with an explicit color.

Syntax:
... {linecolor | lc} {"colorname" | <colorspec> | <n>}
... {textcolor | tc} {<colorspec> | {linetype | lt} <n>}
... {fillcolor | fc} {<colorspec> | linetype <n> | linestyle <n>}

where <colorspec> has one of the following forms:
rgbcolor "colorname" # e.g. "blue"
rgbcolor "0xRRGGBB" # string containing hexadecimal constant
rgbcolor "0xAARRGGBB" # string containing hexadecimal constant
rgbcolor "#RRGGBB" # string containing hexadecimal in x11 format
rgbcolor "#AARRGGBB" # string containing hexadecimal in x11 format
rgbcolor <integer val> # integer value representing AARRGGBB
rgbcolor variable # integer value is read from input file
palette frac <val> # <val> runs from 0 to 1
palette cb <value> # <val> lies within cbrange
palette z
palette <colormap> # use named colormap rather than current palette
variable # color index is read from input file
background or bgnd # background color
black

The "<n>" is the linetype number the color of which is used, see test (p. 303).

"colorname" refers to one of the color names built in to gnuplot. For a list of the available names, see show
colornames (p. 291).

Hexadecimal constants can be given in quotes as"#RRGGBB" or"0xRRGGBB", where RRGGBB represents
the red, green, and blue components of the color and must be between 00 and FF. For example, magenta =
full-scale red + full-scale blue could be represented by "0xFF00FF", which is the hexadecimal representation
of (255 << 16) + (0 << 8) + (255).

"#AARRGGBB" represents an RGB color with an alpha channel (transparency) value in the high bits. An
alpha value of 0 represents a fully opaque color; i.e., "#00RRGGBB" is the same as "#RRGGBB". An alpha
value of 255 (FF) represents full transparency.

66 gnuplot 6.1

For a callable function that converts any of these forms to a 32bit integer representation of the color, see
expressions functions rgbcolor (p. 47).

The color palette is a linear gradient of colors that smoothly maps a single numerical value onto a particular
color. Two such mappings are always in effect. palette frac maps a fractional value between 0 and 1 onto
the full range of the color palette. palette cb maps the range of the color axis onto the same palette. See set
cbrange (p. 291). See also set colorbox (p. 194). You can use either of these to select a constant color from
the current palette.

"palette z" maps the z value of each plot segment or plot element into the cbrange mapping of the palette.
This allows smoothly-varying color along a 3d line or surface. It also allows coloring 2D plots by palette values
read from an extra column of data (not all 2D plot styles allow an extra column). There are two special color
specifiers: background (short form bgnd) for background color and black.

Background color

Most terminals allow you to set an explicit background color for the plot. The special linetype background
(short form bgnd) will draw in this color, and is also recognized as a color name. Examples:

This will erase a section of the canvas by writing over it in the
background color
set term wxt background rgb "gray75"
set object 1 rectangle from x0,y0 to x1,y1 fillstyle solid fillcolor bgnd
Draw an "invisible" line at y=0, erasing whatever was underneath
plot 0 lt background

Linecolor variable

lc variable tells the program to use the value read from one column of the input data as a linetype index, and
use the color belonging to that linetype. This requires a corresponding additional column in the using specifier.
ls variable does the same except the value read from the input data stream is interpreted as the index of a
linestyle rather than a linetype. Text colors can be set similarly using tc variable.

Examples:
Use the third column of data to assign colors to individual points
plot 'data' using 1:2:3 with points lc variable

A single data file may contain multiple sets of data, separated by two
blank lines. Each data set is assigned as index value (see `index`)
that can be retrieved via the `using` specifier `column(-2)`.
See `pseudocolumns`. This example uses to value in column -2 to
draw each data set in a different line color.
plot 'data' using 1:2:(column(-2)) with lines lc variable

Palette

Syntax
... {lc|fc|tc} palette {z}
... {lc|fc|tc} palette frac <fraction>
... {lc|fc|tc} palette cb <fixed z-value>
... fc palette <colormap>

gnuplot 6.1 67

The palette defines a range of colors with gray values between 0 and 1. palette frac <fraction> selects the
color with gray value <fraction>.

palette cb <z-value> selects the single color whose fractional gray value is (z - cbmin) / (cbmax - cbmin).

palette and palette z both map the z coordinate of the plot element being colored onto the current palette. If
z is outside cbrange it is by default mapped to palette fraction 0 or palette fraction 1. If the option set pm3d
noclipcb is set, then quadrangles in a pm3d plot whose z values are out of range will not be drawn at all.

fillcolor palette<colormap>maps the z coordinate of a plot element onto a previously saved named colormap
instead of using the current palette. See set colormap (p. 189).

If the colormap has a separate range associated with it, that range is used to map z values analogous to the use
of cbrange to map the standard palette. If there is no separate range for this colormap then cbrange is used.

Rgbcolor variable

You can assign a separate color for each data point, line segment, or label in your plot. lc rgbcolor variable
tells the program to read RGB color information for each line in the data file. This requires a corresponding
additional column in the using specifier. The extra column is interpreted as a 24-bit packed RGB triple. If the
value is provided directly in the data file it is easiest to give it as a hexadecimal value (see rgbcolor (p. 47)).
Alternatively, the using specifier can contain an expression that evaluates to a 24-bit RGB color as in the
example below. Text colors are similarly set using tc rgbcolor variable.

Example:
Place colored points in 3D at the x,y,z coordinates corresponding to
their red, green, and blue components
rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)
splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable

Dashtype

The dash pattern (dashtype) is a separate property associated with each line, analogous to linecolor or
linewidth. It is not necessary to place the current terminal in a special mode just to draw dashed lines. I.e. the
old command set term <termname> {solid|dashed} is now ignored.

All lines have the property dashtype solid unless you specify otherwise. You can change the default for a
particular linetype using the command set linetype so that it affects all subsequent commands, or you can
include the desired dashtype as part of the plot or other command.

Syntax:
dashtype N # predefined dashtype invoked by number
dashtype "pattern" # string containing a combination of the characters

dot (.) hyphen (-) underscore(_) and space.
dashtype (s1,e1,s2,e2,s3,e3,s4,e4) # dash pattern specified by 1 to 4

numerical pairs <solid length>, <emptyspace length>

Example:
Two functions using linetype 1 but distinguished by dashtype
plot f1(x) with lines lt 1 dt solid, f2(x) with lines lt 1 dt 3

Some terminals support user-defined dash patterns in addition to whatever set of predefined dash patterns they
offer.

Examples:

68 gnuplot 6.1

plot f(x) dt 3 # use terminal-specific dash pattern 3
plot f(x) dt ".. " # construct a dash pattern on the spot
plot f(x) dt (2,5,2,15) # numerical representation of the same pattern
set dashtype 11 (2,4,4,7) # define new dashtype to be called by index
plot f(x) dt 11 # plot using our new dashtype

If you specify a dash pattern using a string the program will convert this to a sequence of <solid>,<empty>
pairs. Dot "." becomes (2,5), dash "-" becomes (10,10), underscore "_" becomes (20,10), and each space
character " " adds 10 to the previous <empty> value. The command show dashtype will show both the
original string and the converted numerical sequence.

Linestyles vs linetypes

A linestyle is a temporary association of properties linecolor, linewidth, dashtype, and pointtype. It is defined
using the command set style line. Once you have defined a linestyle, you can use it in a plot command to
control the appearance of one or more plot elements. In other words, it is just like a linetype except for its
lifetime. Whereas linetypes are permanent (they last until you explicitly redefine them), linestyles last until
the next reset of the graphics state.

Examples:
define a new line style with terminal-independent color cyan,
linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 lt rgb "cyan" lw 3 pt 6
plot sin(x) with linespoints ls 5 # user-defined line style 5

Special linetypes

A few special (non-numerical) linetypes are recognized.

lt black specifies a solid black line.

lt background or lt bgnd specifies a solid line with the background color of the current terminal. See back-
ground (p. 66).

lt nodraw skips drawing the line altogether. This is useful in conjunction with plot style linespoints. It allows
you to suppress the line component of the plot while retaining point properties that are available only in this
plot style. For example

plot f(x) with linespoints lt nodraw pointinterval -3

will draw only every third point and will isolate it by placing a small circle of background color underneath it.
See linespoints (p. 113). lt nodrawmay also be used to suppress a particular set of lines that would otherwise
be drawn automatically. For example you could suppress certain contour levels in a contour plot by setting their
linetype to nodraw.

Layers

A gnuplot plot is built up by drawing its various components in a fixed order. This order can be modified by
assigning some components to a specific layer using the keywords behind, back, or front. For example, to
replace the background color of the plot area you could define a colored rectangle with the attribute behind.

set object 1 rectangle from graph 0,0 to graph 1,1 fc rgb "gray" behind

gnuplot 6.1 69

The order of drawing is
behind
back
the plot itself
the plot legend (`key`)
front

Within each layer elements are drawn in the order
grid, axis, and border elements
pixmaps in numerical order
objects (rectangles, circles, ellipses, polygons) in numerical order
labels in numerical order
arrows in numerical order

In the case of multiple plots on a single page (multiplot mode) this order applies separately to each component
plot, not to the multiplot as a whole.

An exception to this is that several TeX-based terminals (e.g. pslatex, cairolatex) accumulate all text elements
in one output stream and graphics in a separate output stream; the text and graphics are then combined to yield
the final figure. In general this leaves each text element either completely behind or completely in front of the
graphics.

70 gnuplot 6.1

Marks

Version 6.1 introduces a new class of objects called marks. These are user-defined shapes composed of lines
and polygons. Marks can be placed individually by set object mark, analogous to existing object types such as
rectangles and circles. Marks can also used as elements of a plot by new 2D plot styles with marks and with
linesmarks, which are analogous to existing plot styles with points and with linespoints.

Individual marks are defined andmanaged by new commands setmark, unsetmark, showmark, savemarks.
These commands are analogous to existing commands that define and manage arrow styles and labels. Each
mark definition is assigned a numeric identifying tag used to select it in subsequent plot commands or object
definitions.

Once defined, a mark can be further modified by translation, rotation, aspect ratio deformation, and application
of color or fill properties.

If a mark is given a fillcolor and fillstyle when it is defined by set mark, these take precedence over any fill
properties in a plot or object that the mark appears in. If no fillstyle is given in set mark the mark will be
rendered with the style given in the plot command or set object command if there is one, otherwise it will use
the global setting from set style fill.

The syntax used to define a mark is fairly complex. Furthermore the mark definition may require reading
coordinate data from a file or datablock. For these reasons marks are typically defined in a separate file and
loaded before use in plotting. See set mark (p. 225).

Mark data

The data structure for each mark holds an identifying numeric tag, a title that will be reported by "showmark",
a fill style, and a fill color. These properties are all controlled using the set mark (p. 225) command.

set mark <tab> {<data>} {<properties>}

The mark also holds an array of data describing the vertices of polygons and lines. This section describes the
format and interpretation of mark data.

The vertices of mark elements are read sequentially, with an empty record separating one polygon or line
segment from the next. This is similar to the input format used for plot with polygons. If you add vertices
using set mark N append <data> the empty record is added automatically.

Each vertex has three values [x y mode]. The mode values are
0 (default) use whatever stroke and fill the fillstyle implies
1 always stroke, never fill
2 always fill, never stroke
3 always stroke and fill
4 fill with background color

If the mode value is 0 or not present, each group of vertices will be treated as a filled polygon if the active
fillstyle is not "fs empty", and will be stroked if the active fillstyle is not "fs noborder". This is the default.

Here is an example of defining three triangular marks. One will always be drawn as an empty triangle (mode
1). The second will always be drawn as a filled triangle with no border (mode 2). The third will default to
whatever fillstyle is active when the mark is used. This would typically be the fillstyle given in a command plot
with marks mt 3 or in a command set object mark mt 3.

array t = [{-0.5, 0}, {0, 0.7}, {0.5, 0}, {-0.5, 0}]
set mark 1 t using 2:3:(1) title "empty triangle"

gnuplot 6.1 71

set mark 2 t using 2:3:(2) title "filled triangle"
set mark 3 t using 2:3 title "generic triangle"

For an example of the format as provided in a file or datablock see marks examples annotation (p. 74) or
marks examples windbarbs (p. 75).

Marks examples

The examples below illustrate a variety of ways that marks can be used.

Example: custom point shapes

The line segments and closed areas making up a mark definition may either be provided as [x,y] coordinates
or as a pair of parametric functions x(t),y(t). One way of looking at the set mark command is that it acts like
a simple plot command, plotting either data or a parametric function. In fact the set mark command uses the
same input code layer as the plot command. It can even have an associated title to identify it. For more detail
on how this works, see set mark (p. 225).

This example defines four marks. Each is a background-filled shape that can be used to supplement the shapes
available as default point types. Two of these marks are defined by arrays of coordinates. The other two are
defined parametrically.

FILLSTROKE = 3 # indicates the mark has both lines and fill properties
array Square = [{-1,-1}, { 1,-1}, { 1, 1}, {-1, 1}, {-1,-1}]
array Triangle = [{0,1.2}, {1.04,-0.6}, {-1.04,-0.6}, {0,1.2}]
set mark 1 Square using 2:3:(FILLSTROKE) fc bgnd title "square"
set mark 2 Triangle using 2:3:(FILLSTROKE) fc bgnd title "triangle"
set angle degrees
set mark 3 [0:360:10] '+' using (sin($1)):(cos($1)):(FILLSTROKE) \

title "circle" fc bgnd
set mark 4 [0:360:72] '+' using (sin($1)):(cos($1)):(FILLSTROKE) \

title "pentagon" fc bgnd
unset angle

Custom point shapes defined as marks
Just as you could use the existing default point types in
a plot request "with linespoints pt N", you can now use
the new custom shapes in a plot request "with linesmarks
marktype N". Although not shown here, it is also possi-
ble to request marktype variable if the choice of shape
is determined by an additional column of input data. The
demo collection contains an expanded version of this ex-
ample in extra_points.dem

set title "Custom point shapes defined as marks"
plot for [M=1:4] -sin(x/M) with linesmarks marktype M

http://www.gnuplot.info/demo/extra_points.html

72 gnuplot 6.1

Example: scatterplots

The previous example illustrated use of background-filled marks where the mark polygon inherits the color of
the line it is part of. This example shows how the fill color and border color of such a mark can be varied
separately. Note that

• Mark coordinates can be provided in either an array, a datablock, or a file (not shown).

• Data can be transformed by the using specifier in the set mark command. In this example mark 3 is an
upside-down mark 2.

• Further transformation can be applied in the plot command. In this example marks are scaled by point-
size.

The data plotted in these examples is taken from iris.dem

For simplicity, data preprocessing to generate separate datablocks $setosa, $versicolor, $virginicana is not
shown here.

array Square = [{-0.5,-0.5}, { 0.5,-0.5}, { 0.5, 0.5}, {-0.5, 0.5}, {-0.5,-0.5}]
$Triangle << EOD
0 0.5
0.433013 -0.25

-0.433013 -0.25
0 0.5

EOD

set mark 1 Square using 2:3
set mark 2 $Triangle using 1:2
set mark 3 $Triangle using 1:(-$2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1.5 2 2.5 3 3.5 4 4.5 5

setosa
versicolor
virginica

P
et

al
 L

en
g

th

Sepal Width

The first plot shows that if no fillstyle is provided in either
the mark definition or the plot command, it is inherited
from the global properties in set style fill. If no fillcolor
is provided, it follows the default sequence of plot colors.

set object 1 rectangle from graph 0,0 to graph 1,1
set object 1 fillstyle solid fc "gray" behind

set title "White outline with solid color fill"
set style fill solid border lc 'white'

plot $setosa with marks mt 1 ps 1.5 title "setosa", \
$versicolor with marks mt 2 ps 2 title "versicolor", \
$virginica with marks mt 3 ps 2 title "virginica"

http://www.gnuplot.info/demo/iris.html

gnuplot 6.1 73

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1.5 2 2.5 3 3.5 4 4.5 5

setosa
versicolor
virginica

P
et

al
 L

en
g

th

Sepal Width

The second plot provides both a fillcolor and a stroke
color in the plot command. The key entries then need
a different fill color.

set style fill solid
plot $setosa with marks mt 1 ps 1.5 lw 2 notitle \

fc "gray" fs border lc '#1f77b4', \
$versicolor with marks mt 2 ps 2 lw 2 notitle \

fc "gray" fs border lc '#ff7f0e', \
$virginica with marks mt 3 ps 2 lw 2 notitle \

fc "gray" fs border lc '#2ca02c', \
keyentry with marks mt 1 ps 1.5 lw 2 \

fc bgnd fs border lc '#1f77b4' \
title "setosa", \

keyentry with marks mt 2 ps 2 lw 2 \
fc bgnd fs border lc '#ff7f0e' \
title "versicolor", \

keyentry with marks mt 3 ps 2 lw 2 \
fc bgnd fs border lc '#2ca02c' \
title "virginica"

74 gnuplot 6.1

Example: annotation

The fact that marks are deformable means that a single mark definition can be used as a template to draw
appropriately scaled marks as mark-up elements to annotate plot ranges or groups of plot elements. This
example show definition of a single mark that will be positioned and stretched horizontally to highlight and
label selected groups within a bar chart. This example is a simplified version of mark_grouping.dem

In the full demo the left-most x value and horizontal extent for each group are calculated from an input data
set. Here we assume these values have been pre-calculated and stored in $markup.

It is convenient to dissociate the annotation markup from the specific yrange of the data by plotting the marks
and labels against the y2 axis rather than against the y axis. This is not necessary, however. An alternative
would be to plot the marks against the y axis but add the keywords "noclip noautoscale" so that the marks
neither contribute to the y axis range nor are they clipped against it.

 0
 1
 2
 3
 4
 5
 6
 7
 8

A B C D E F G H I J K L M

Group 1 Group 2 Group 3 Group 4

$Group_mark << EOD
x y 1=stroke

0 -0.5 1
0 0 1
1 0 1
1 -0.5 1

0.5 0.0 1
0.5 0.5 1
EOD

set mark 1 $Group_mark

$markup << EOD
label width left_edge
"Group 1" 4 1
"Group 2" 3 6
"Group 3" 4 10
"Group 4" 2 15
EOD
TOP = 9 # y value of the grouping marks

set link y2
set ytics nomirror rangelimited
set border 3

plot $bar_data using ($0+$3):2:(0.8):3:xtic(1) with boxes lc variable, \
$markup using ($3-0.5):(TOP):2:(1) axes x1y2 with marks mt 1 units xy lt -

1 lw 1, \
$markup using ($3-0.5+$2/2):(TOP):1 axes x1y2 with labels center offset 0,1.7

A complementary example of using a vertically displaced and stretched mark for annotation is given in
mark_labels.dem

http://www.gnuplot.info/demo/mark_grouping.html
http://www.gnuplot.info/demo/mark_labels.html

gnuplot 6.1 75

Example: windbarbs

5 knots 25 knots 50 knots

This example shows how the 5-column form of"plot with
marks" can be used to control the position, scale, and ro-
tation of marks. Each barb is made up of several line
segments. Some also contain a solid-fill triangular flag.
Coordinates in the range [0:1] are provided in data blocks
(see marks data (p. 70)). The plot command then ap-
plies a uniform scale and variable rotation.

The three windbarb marks shown here are extracted from
the full set used by windbarbs.dem

#
Windbarbs representing 5, 25, and 50 knot wind speed
rotated and uniformly scaled by the 5-column form of the plot command
plot with marks using x:y:scale:scale:angle units gxx

$MARK_5 <<EOM
0 0 1
0 1 1

0 0.870 1
0.235 0.956 1
EOM

$MARK_25 <<EOM
0 0 1
0 1 1

0 1 1
0.470 1.171 1

0 0.870 1
0.470 1.041 1

0 0.740 1
0.235 0.826 1
EOM

$MARK_50 <<EOM
0 0 1
0 1.100 1

0 0.900 3
0.470 1.071 3
0 1.100 3
0 0.900 3
EOM

set mark 5 $MARK_5 title " 5 knots" fill solid
set mark 25 $MARK_25 title "25 knots" fill solid
set mark 50 $MARK_50 title "50 knots" fill solid

unset border; unset tics
set key horizontal reverse Left samplen 1 height 3
set xrange [0:10]
set yrange [0:8]

http://www.gnuplot.info/demo/windbarbs.html

76 gnuplot 6.1

SIZE = 0.05 # barb size will be 5% of graph width (units gxx)

plot [t=1:9:2] '+' using (t):(6):(SIZE):(SIZE):(36*t) notitle with marks mt 5 units gxx, \
[t=1:9:2] '+' using (t):(4):(SIZE):(SIZE):(15*t) notitle with marks mt 25 units gxx, \
[t=1:9:2] '+' using (t):(2):(SIZE):(SIZE):(25*t) notitle with marks mt 50 units gxx, \
keyentry with marks mt 5 ps 4 lc "black" title "5 knots", \
keyentry with marks mt 25 ps 4 lc "black" title "25 knots", \
keyentry with marks mt 50 ps 4 lc "black" title "50 knots"

gnuplot 6.1 77

Example: parametric marks

Syntax:
set mark <tag> [start:end:increment] '+' using (f($1)):(g($1))

1 2 3 4 5 6 7 8 9

Mark shapes defined by parametric formulas
The syntax for the set mark command follows that of
a plot command. Thus as an alternative to reading x/y
coordinates from a file, array, or data block, a mark can
be defined by a pair of parametric equations operating on
a sampled implicit variable indicated by the pseudofile
’+’. See special_filenames (p. 166).

This example defines a set of parametric marks and shows
how they can be combined with stroke and fill styles to
produce a family of plot symbols. This example is a sub-
set of mark_formulas.dem

set angle degrees
set mark 1 [t=0:360:10] '+' using (sin(t)):(cos(t)) ### circle
set mark 2 [t=0:360:120] '+' using (sin(t)):(cos(t)) ### triangle
set mark 3 [t=0:360:90] '+' using (sin(t)):(cos(t)) ### diamond
set mark 4 [t=0:360:72] '+' using (sin(t)):(cos(t)) ### pentagon
set mark 5 [t=0:360:60] '+' using (sin(t)):(cos(t)) ### hexagon
set mark 6 [t=0:360:10] '+' using (cos(t)):(0.8*(sqrt(abs(cos(t)))+sin(t))) ### heart
set mark 7 [t=0:360:10] '+' using (r=0.5*abs(cos(3/2.0*t))+0.5, r*sin(t)):(r*cos(t)) ### 3 petals
set mark 8 [t=0:360:72/2] '+' using (r=0.4*(cos(5*t)+2), r*sin(t)):(r*cos(t)) ### star
set mark 9 [t=0:360:72/20] '+' using (r=0.18*(cos(5*t)+5), r*sin(t)):(r*cos(t)) ### 5 petals
unset angle

array dummy[1]
S = 1.25 # scale factor

plot \
for [k=1:9] dummy using (k):(11):(sprintf("%i",k)) with labels center, \
for [k=1:9] dummy using (k):(9) with marks mt k ps S fill solid 0.5 border lc 'black', \
for [k=1:9] dummy using (k):(7) with marks mt k ps S fill solid (1./k) fc 'black', \
for [k=1:9] dummy using (k):(5) with marks mt k ps S fill solid 0.0 border lc 'black', \
for [k=1:9] dummy using (k):(3) with marks mt k ps S fill solid 1.0 noborder fc 'red', \
for [k=1:9] dummy using (k):(1) with marks mt k ps S fill solid 1.0 border lc 'blue'

http://www.gnuplot.info/demo/mark_formulas.html

78 gnuplot 6.1

Mouse input

Many terminals allow interaction with the current plot using the mouse. Some also support the definition of
hotkeys to activate pre-defined functions by hitting a single key while the mouse focus is in the active plot
window. It is even possible to combine mouse input with batch command scripts, by invoking the command
pause mouse and then using the mouse variables returned by mouse clicking as parameters for subsequent
scripted actions. See bind (p. 78) and mouse variables (p. 79). See also the command set mouse (p. 227).

Bind

Syntax:
bind {allwindows} [<key-sequence>] ["<gnuplot commands>"]
bind <key-sequence> ""
reset bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gnuplot commands which will be executed
when a certain key or key sequence is pressed while the driver’s window has the input focus. Note that bind
is only available if gnuplot was compiled with mouse support and it is used by all mouse-capable terminals.
A user-specified binding supersedes any builtin bindings, except that <space> and ’q’ cannot normally be
rebound. For an exception, see bind space (p. 79).

Mouse button bindings are only active in 2D plots.

You get the list of all hotkeys by typing show bind or bind or by typing the hotkey ’h’ in the graph window.

Key bindings are restored to their default state by reset bind.

Note that multikey-bindings with modifiers must be given in quotes.

Normally hotkeys are only recognized when the currently active plot window has focus. bind allwindows
<key> ... (short form: bind all<key> ...) causes the binding for<key> to apply to all gnuplot plot windows,
active or not. In this case gnuplot variableMOUSE_KEY_WINDOW is set to the ID of the originating window,
and may be used by the bound command.

Examples:

- set bindings:
bind a "replot"
bind "ctrl-a" "plot x*x"
bind "ctrl-alt-a" 'print "great"'
bind Home "set view 60,30; replot"
bind all Home 'print "This is window ",MOUSE_KEY_WINDOW'

- show bindings:
bind "ctrl-a" # shows the binding for ctrl-a
bind # shows all bindings
show bind # show all bindings

- remove bindings:
bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a

(note that builtins cannot be removed)
reset bind # installs default (builtin) bindings

- bind a key to toggle something:

gnuplot 6.1 79

v=0
bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"

Modifiers (ctrl / alt) are case insensitive, keys not:
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt, shift (only valid for Button1 Button2 Button3)

List of supported special keys:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
"PageUp", "PageDown", "End", "Begin",

"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",

"KP_1" - "KP_9", "F1" - "F12"

The following are window events rather than actual keys
"Button1" "Button2" "Button3" "Close"

See also help for mouse (p. 227).

Bind space

If gnuplot was built with configuration option –enable-raise-console, then typing <space> in the plot window
raises gnuplot’s command window. Maybe. In practice this is highly system-dependent. This hotkey can be
changed to ctrl-space by starting gnuplot as ’gnuplot -ctrlq’, or by setting the XResource ’gnuplot*ctrlq’.

Mouse variables

Whenmousing is active, clicking in the active window will set several user variables that can be accessed from
the gnuplot command line. The coordinates of the mouse at the time of the click are stored in MOUSE_X
MOUSE_Y MOUSE_X2 and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time,
are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL. These variables are
set to undefined at the start of every plot, and only become defined in the event of a mouse click in the active
plot window. To determine from a script if the mouse has been clicked in the active plot window, it is sufficient
to test for any one of these variables being defined.

plot 'something'
pause mouse
if (exists("MOUSE_BUTTON")) call 'something_else'; \
else print "No mouse click."

It is also possible to track keystrokes in the plot window using the mousing code.
plot 'something'
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y

80 gnuplot 6.1

When pause mouse keypress is terminated by a keypress, then MOUSE_KEY will contain the ascii character
value of the key that was pressed. MOUSE_CHAR will contain the character itself as a string variable. If
the pause command is terminated abnormally (e.g. by ctrl-C or by externally closing the plot window) then
MOUSE_KEY will equal -1.

Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN, GPVAL_X_MAX,
GPVAL_Y_MIN, and GPVAL_Y_MAX, see gnuplot-defined variables (p. 58).

Persist

Many gnuplot terminals (aqua, pm, qt, x11, windows, wxt, ...) open separate display windows on the screen into
which plots are drawn. The persist option tells gnuplot to leave these windows open when the main program
exits. It has no effect on non-interactive terminal output. For example if you issue the command

gnuplot -persist -e 'plot sinh(x)'

gnuplot will open a display window, draw the plot into it, and then exit, leaving the display window containing
the plot on the screen. You can also specify persist or nopersist when you set a new terminal.

set term qt persist size 700,500

Depending on the terminal type, some mousing operations may still be possible in the persistent window.
However operations like zoom/unzoom that require redrawing the plot are not possible because the main pro-
gram has exited. If you want to leave a plot window open and fully mouseable after creating the plot, for
example when running gnuplot from a script file rather than interactively, see pause mouse close (p. 148).

Plotting

There are four gnuplot commands which actually create a plot: plot, splot, replot, and refresh. Other com-
mands control the layout, style, and content of the plot that will eventually be created. plot generates 2D plots.
splot generates 3D plots (actually 2D projections, of course). replot reexecutes the previous plot or splot
command. refresh is similar to replot but it reuses any previously stored data rather than rereading data from
a file or input stream.

Each time you issue one of these four commands it will redraw the screen or generate a new page of output
containing all of the currently defined axes, labels, titles, and all of the various functions or data sources listed
in the original plot command. If instead you need to place several complete plots next to each other on the
same page, e.g. to make a panel of sub-figures or to inset a small plot inside a larger plot, use the command set
multiplot to suppress generation of a new page for each plot command.

Much of the general information about plotting can be found in the discussion of plot; information specific to
3D can be found in the splot section.

plot operates in either rectangular or polar coordinates – see set polar (p. 254). splot operates in Cartesian
coordinates, but will accept azimuthal or cylindrical coordinates on input. See set mapping (p. 224). plot
also lets you use each of the four borders – x (bottom), x2 (top), y (left) and y2 (right) – as an independent
axis. The axes option lets you choose which pair of axes a given function or data set is plotted against. A full
complement of set commands exists to give you complete control over the scales and labeling of each axis.
Some commands have the name of an axis built into their names, such as set xlabel. Other commands have
one or more axis names as options, such as set logscale xy. Commands and options controlling the z axis have
no effect on 2D graphs.

gnuplot 6.1 81

splot can plot surfaces and contours in addition to points and/or lines. See set isosamples (p. 212) for infor-
mation about defining the grid for a 3D function. See splot datafile (p. 294) for information about the requisite
file structure for 3D data. For contours see set contour (p. 195), set cntrlabel (p. 191), and set cntrparam
(p. 191).

In splot, control over the scales and labels of the axes are the same as with plot except that there is also a z axis
and labeling the x2 and y2 axes is possible only for pseudo-2D plots created using set view map.

Plugins

The set of functions available for plotting or for evaluating expressions can be extended through a plugin mech-
anism that imports executable functions from a shared library. For example, gnuplot versions through 5.4 did
not provide a built-in implementation of the upper incomplete gamma function Q(a,x).
Q(a, x) = 1

Γ(x)

∫∞
x ta−1e−tdt . You could define an approximation directly in gnuplot like this:

Q(a,x) = 1. - igamma(a,x)

However this has inherently limited precision as igamma(a,x) approaches 1. If you need a more accurate
implementation, it would be better to provide one via a plugin (see below). Once imported, the function can
be used just as any other built-in or user-defined function in gnuplot. See import (p. 145).

The gnuplot distribution includes source code and instructions for creating a plugin library in the directory
demo/plugin. You can modify the simple example file demo_plugin.c by replacing one or more of the toy
example functions with an implementation of the function you are interested in. This could include invocation
of functions from an external mathematical library.

The demo/plugin directory also contains source for a plugin that implements Q(a,x). As noted above, this
plugin allows earlier versions of gnuplot to provide the same function uigamma as version 6.

import Q(a,x) from "uigamma_plugin"
uigamma(a,x) = ((x<1 || x<a) ? 1.0-igamma(a,x) : Q(a,x))

Scope of variables

Gnuplot variables are global except in the special cases listed below. There is a single persistent list of active
variables indexed by name. Assignment to a variable creates or replaces an entry in that list. The only way to
remove a variable from that list is the undefine command.

Exception 1: The scope of the variable used in an iteration specifier is private to that iteration. You cannot
permanently change the value of the iteration variable inside the iterated clause. If the iteration variable has
a value prior to iteration, that value will be retained or restored at the end of the iteration. For example, the
following commands will print 1 2 3 4 5 6 7 8 9 10 A.

i = "A"
do for [i=1:10] { print i; i=10; }
print i

Exception 2: The parameter names used in defining a function are only placeholders for the actual values that
will be provided when the function is called. For example, any current or future values of x and y are not
relevant to the definition shown here, but A must exist as a global variable when the function is later evaluated:

func(x,y) = A + (x+y)/2.

82 gnuplot 6.1

Exception 3: Variables declared with the local command. The local qualifier (new in version 6) allows optional
declaration of a variable or array whose scope is limited to the execution of the code block in which it is found.
This includes load and call operations, evaluation of a function block, and the code in curly brackets that follows
an if, else, do for, or while condition. If the name of a local variable duplicates the name of a global variable,
the global variable is shadowed until exit from the local scope.

Start-up (initialization)

When gnuplot is run, it first looks for a system-wide initialization file gnuplotrc. The location of this file is
determined when the program is built and is reported by show loadpath. The program then looks in the user’s
HOME directory for a file called .gnuplot on Unix-like systems or GNUPLOT.INI on other systems. (OS/2
will look for it in the directory named in the environment variableGNUPLOT; Windows will useAPPDATA).
On Unix-like systems gnuplot additionally checks for the file $XDG_CONFIG_HOME/gnuplot/gnuplotrc.

String constants, string variables, and string functions

In addition to string constants, most gnuplot commands also accept a string variable, a string expression, or a
function that returns a string. For example, the following four methods of creating a plot all result in the same
plot title:

four = "4"
graph4 = "Title for plot #4"
graph(n) = sprintf("Title for plot #%d",n)

plot 'data.4' title "Title for plot #4"
plot 'data.4' title graph4
plot 'data.4' title "Title for plot #".four
plot 'data.4' title graph(4)

Since integers are promoted to strings when operated on by the string concatenation operator (’.’ character),
the following method also works:

N = 4
plot 'data.'.N title "Title for plot #".N

In general, elements on the command line will only be evaluated as possible string variables if they are not
otherwise recognizable as part of the normal gnuplot syntax. So the following sequence of commands is legal,
although probably should be avoided so as not to cause confusion:

plot = "my_datafile.dat"
title = "My Title"
plot plot title title

Substrings

Substrings can be specified by appending a range specifier to any string, string variable, or string-valued func-
tion. The range specifier has the form [begin:end], where begin is the index of the first character of the substring
and end is the index of the last character of the substring. The first character has index 1. The begin or end
fields may be empty, or contain ’*’, to indicate the true start or end of the original string. Thus str[:] and str[*:*]
both describe the full string str. Example:

gnuplot 6.1 83

eos = strlen(file)
if (file[eos-3:*] eq ".dat") {

set output file[1:eos-4] . ".png"
plot file

}

There is also an equivalent function substr(string, begin, end).

String operators

Three binary operators require string operands: the string concatenation operator ".", the string equality op-
erator "eq" and the string inequality operator "ne". The following example will print TRUE.

if ("A"."B" eq "AB") print "TRUE"

String functions

Gnuplot provides several built-in functions that operate on strings. General formatting functions: see gprintf
(p. 46) sprintf (p. 46). Time formatting functions: see strftime (p. 46) strptime (p. 46). String manipulation:
see split (p. 54), substr (p. 46) strstrt (p. 46) trim (p. 55) word (p. 54) words (p. 54).

String encoding

Gnuplot’s built-in string manipulation functions are sensitive to utf-8 encoding (see set encoding (p. 202)).
For example
set encoding utf8
utf8string = "αβγ"
strlen(utf8string) returns 3 (number of characters, not number of bytes)
utf8string[2:2] evaluates to "β"
strstrt(utf8string,"β") evaluates to 2

Substitution and Command line macros

When a command line to gnuplot is first read, i.e. before it is interpreted or executed, two forms of lexical
substitution are performed. These are triggered by the presence of text in backquotes (ascii character 96) or
preceded by @ (ascii character 64).

Substitution of system commands in backquotes

Command-line substitution is specified by a system command enclosed in backquotes. This command is
spawned and the output it produces replaces the backquoted text on the command line. Exit status of the
system command is returned in variables GPVAL_SYSTEM_ERRNO and GPVAL_SYSTEM_ERRMSG.

Note: Internal carriage-return (’\r’) and newline (’\n’) characters are not stripped from the substituted string.

Command-line substitution can be used anywhere on the gnuplot command line except inside strings delimited
by single quotes.

For example, these will generate labels with the current time and userid:

84 gnuplot 6.1

set label "generated on `date +%Y-%m-%d` by `whoami`" at 1,1
set timestamp "generated on %Y-%m-%d by `whoami`"

This creates an array containing the names of files in the current directory:
FILES = split("`ls -1`")

Substitution of string variables as macros

The character @ is used to trigger substitution of the current value of a string variable into the command line.
The text in the string variable may contain any number of lexical elements. This allows string variables to be
used as command line macros. Only string constants may be expanded using this mechanism, not string-valued
expressions. For example:

style1 = "lines lt 4 lw 2"
style2 = "points lt 3 pt 5 ps 2"
range1 = "using 1:3"
range2 = "using 1:5"
plot "foo" @range1 with @style1, "bar" @range2 with @style2

The line containing @ symbols is expanded on input, so that by the time it is executed the effect is identical to
having typed in full

plot "foo" using 1:3 with lines lt 4 lw 2, \
"bar" using 1:5 with points lt 3 pt 5 ps 2

The function exists() may be useful in connection with macro evaluation. The following example checks that
C can safely be expanded as the name of a user-defined variable:

C = "pi"
if (exists(C)) print C," = ", @C

Macro expansion does not occur inside either single or double quotes. However macro expansion does occur
inside backquotes.

Macro expansion is handled as the very first thing the interpreter does when looking at a new line of commands
and is only done once. Therefore, code like the following will execute correctly:

A = "c=1"
@A

but this line will not, since the macro is defined on the same line and will not be expanded in time
A = "c=1"; @A # will not expand to c=1

Macro expansion inside a bracketed iteration occurs before the loop is executed; i.e. @A will always act as the
original value of A even if A itself is reassigned inside the loop.

For execution of complete commands the evaluate command may also be handy.

String variables, macros, and command line substitution

The interaction of string variables, backquotes and macro substitution is somewhat complicated. Backquotes
do not block macro substitution, so

filename = "mydata.inp"
lines = ` wc --lines @filename | sed "s/ .*//" `

gnuplot 6.1 85

results in the number of lines in mydata.inp being stored in the integer variable lines. And double quotes do
not block backquote substitution, so

mycomputer = "`uname -n`"

results in the string returned by the system command uname -n being stored in the string variable mycomputer.

However, macro substitution is not performed inside double quotes, so you cannot define a system command
as a macro and then use both macro and backquote substitution at the same time.

machine_id = "uname -n"
mycomputer = "`@machine_id`" # doesn't work!!

This fails because the double quotes prevent @machine_id from being interpreted as a macro. To store a system
command as a macro and execute it later you must instead include the backquotes as part of the macro itself.
This is accomplished by defining the macro as shown below. Notice that the sprintf format nests all three types
of quotes.

machine_id = sprintf('"`uname -n`"')
mycomputer = @machine_id

Syntax

Options and any accompanying parameters are separated by spaces whereas lists and coordinates are separated
by commas. Ranges are separated by colons and enclosed in brackets [], text and file names are enclosed in
quotes, and a few miscellaneous things are enclosed in parentheses.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of variables
being fitted (the list after the via keyword on the fit command); lists of discrete contours or the loop parameters
which specify them on the set cntrparam command; the arguments of the set commands dgrid3d, dummy,
isosamples, offsets, origin, samples, size, time, and view; lists of tics or the loop parameters which specify
them; the offsets for titles and axis labels; parametric functions to be used to calculate the x, y, and z coordinates
on the plot, replot and splot commands; and the complete sets of keywords specifying individual plots (data
sets or functions) on the plot, replot and splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate computations
in using specifiers of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)

Square brackets are used to delimit ranges given in set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot or splot
commands) and to separate entries in the using specifier of the plot, replot, splot and fit commands.

Semicolons are used to separate commands given on a single command line.

Curly braces are used in the syntax for enhanced text mode and to delimit blocks in if/then/else statements.
They are also used to denote complex numbers: {3,2} = 3 + 2i.

Quote marks

Gnuplot uses three forms of quote marks for delimiting text strings, double-quote (ascii 34), single-quote (ascii
39), and backquote (ascii 96).

86 gnuplot 6.1

File names may be entered in either single or double quotes. String constants and text strings used for labels,
titles, or other plot elements may be enclosed in either single quotes or double quotes. Further processing of
the quoted text depends on the choice of quote marks.

Single and double quoted strings differ as follows

• Backslash processing of special characters \n (newline) \r (return) and \t (tab) is performed only for
double-quoted strings.

• In single-quoted strings, backslashes are just ordinary characters. To get a single-quote in a single-quoted
string, it must be doubled. Thus the strings "d\" s’ b\\" and ’d" s’ ’ b\’ are completely equivalent.

• Unicode escape sequences \U+xxxx are processed for both single-quoted and double-quoted strings.
• Enhanced text processing can be used for both double-quoted text and single-quoted text.
• Octal escape sequences \ooo are processed in single-quoted strings only if enhanced text is enabled.
Octal escapes are always process in double-quoted strings.

Back-quotes are used to enclose system commands for substitution into the command line. See substitution
(p. 83).

Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by the com-
mands set xdata time, set ydata time, etc.

Internally all times and dates are converted to the number of seconds from the year 1970. The command set
timefmt defines the default format for all inputs: data files, ranges, tics, label positions – anything that accepts
a time data value defaults to receiving it in this format. Only one default format can be in effect at a given time.
Thus if both x and y data in a file are time/date, by default they are interpreted in the same format. However
this default can be replaced when reading any particular file or column of input using the timecolumn function
in the corresponding using specifier.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard Time).
There is no provision for changing the time zone or for daylight savings. If all your data refer to the same time
zone (and are all either daylight or standard) you don’t need to worry about these things. But if the absolute
time is crucial for your application, you’ll need to convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change timefmt, and
then show the quantity again, it will be displayed in the new timefmt. For that matter, if you reset the data
type flag for that axis (e.g. set xdata), the quantity will be shown in its numerical form.

The commands set format or set tics format define the format that will be used for tic labels, whether or not
input for the specified axis is time/date.

If time/date information is to be plotted from a file, the using optionmust be used on the plot or splot command.
These commands simply use white space to separate columns, but white space may be embedded within the
time/date string. If you use tabs as a separator, some trial-and-error may be necessary to discover how your
system treats them.

The time function can be used to get the current system time. This value can be converted to a date string with
the strftime function, or it can be used in conjunction with timecolumn to generate relative time/date plots.
The type of the argument determines what is returned. If the argument is an integer, time returns the current

gnuplot 6.1 87

time as an integer, in seconds from 1 Jan 1970. If the argument is real (or complex), the result is real as well.
The precision of the fractional (sub-second) part depends on your operating system. If the argument is a string,
it is assumed to be a format string, and it is passed to strftime to provide a formatted time/date string.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like
03/21/95 10:00 6.02e23

This file can be plotted by
set xdata time
set timefmt "%m/%d/%y"
set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"
set timefmt "%m/%d/%y %H:%M"
plot "data" using 1:3

which will produce xtic labels that look like "03/21".

Gnuplot tracks time to millisecond precision. Time formats have been modified to match this. Example: print
the current time to msec precision

print strftime("%H:%M:%.3S %d-%b-%Y",time(0.0))
18:15:04.253 16-Apr-2011

See time_specifiers (p. 207), set xtics time (p. 285), set mxtics time (p. 232).

Watchpoints

Support for watchpoints is present only if your copy of gnuplot was built with configuration option –enable-
watchpoints. This feature is EXPERIMENTAL [details may change in subsequent versions].

Syntax:
plot FOO watch {x|y|z|F(...)} = <value> {label <string-valued function>}
plot FOO watch mouse

set style watchpoints nolabels
set style watchpoints label <label-properties>

unset style watchpoints # return to default style

show watchpoints # summarizes all watches from previous plot command

A watchpoint is a target value for the x, y, or z coordinate or for a function f(a,...). Each watchpoint is attached
to a single plot within a plot or splot command. Every component line segment of that plot is checked against
all watchpoints attached the plot to see whether one or more of the watchpoint targets is satisfied at a point
along that line segment. A list of points that satisfy the the target condition ("hits") is accumulated as the plot
is drawn.

For example, if there is a watchpoint with a target y=100, each line segment is checked to see if the y coordinates
of the two endpoints bracket the target y value. If so then some point [x,y] on the line segment satisfies the
target condition y = 100 exactly. This target point is then found by linear interpolation or by iterative bisection.

Watchpoints within a single plot command are numbered successively. More than one watchpoint per plot
component may be specified. Example:

plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 watch y=0.75

Watchpoints are tracked only for plot styles with lines and with linespoints. Watchpoints are also possible
for splot with lines in 2D xy projection (set view map).

88 gnuplot 6.1

 0 20 40 60 80 100 120
0.00

0.25

0.50

0.75

1.00

68.3 : 0.75

63.6 : 0.5

50.6 : 0.25

Find quartile values on a ROC curve
Watchpoint hits for each target in the previous plot com-
mand are stored in named arrays WATCH_n. You can
also display a summary of all watchpoint hits from the
previous plot command; see show watchpoints (p. 277).

gnuplot> show watchpoints
Plot title: "DATA using 1:2 smooth cnormal"

Watch 1 target y = 0.25 (1 hits)
hit 1 x 49.7 y 0.25

Watch 2 target y = 0.5 (1 hits)
hit 1 x 63.1 y 0.5

Watch 3 target y = 0.75 (1 hits)
hit 1 x 67.8 y 0.75

Smoothing: Line segments are checked as they are drawn. For unsmoothed data plots this means a hit found
by interpolation will lie exactly on a line segment connecting two data points. If a data plot is smoothed, hits
will lie on a line segment from the smoothed curve. Depending on the quality of the smoothed fit, this may or
may not be more accurate than the hit from the unsmoothed data.

Accuracy: If the line segment was generated from a function plot, the exact value of x such that f(x) = y is
found by iterative bisection. Otherwise the coordinates [x,y] are approximated by linear interpolation along the
line segment.

Watch labels

By default, labels are always generated for the target "watch mouse". You can turn labels on for other watch
targets using the command set style watchpoint labels or by specifying a label as part of the watchpoint target
in a plot command.

The default label text is "x : y", where x and y are the coordinates of the point, formatted using the current
settings for the corresponding axes.

Example:
set y2tics format "%.2f°"
set style watchpoint labels point pt 6
plot FOO axes x1y2 watch mouse

You can provide a customized label for each watch target, either as a string constant or via function that returns
a string.

Examples:
set style data lines
plot FOO watch y=50 label "50" watch y=100 label "100"
f(x,y) = 2*x - y # f(x,y) = 0 defines a sloping line
plot $CONTOURS using 1:2:3 watch f(x,y) = 0 label sprintf("%.2f",z)

Each watchpoint label is placed in a textbox. See set style textbox (p. 266).

Watchpoint function target

Awatchpoint can be set for the target value of a function. The function is evaluated at the beginning and end of
each line segment in the plot. If the endpoint values span the target value, the [x,y] hit coordinates are reported
after linear interpolation.

plot FOO watch func(...)=targetvalue

gnuplot 6.1 89

The trivial example below sets a watchpoint target that will place a label where the curve crosses the line y
= ax + b. When evaluated at [x,y] the function Line() returns the deviation of the current y coordinate from
the value ax + b. Thus when evaluated at an intersection of the plotted curve with the line ax+b, the function
returns zero. We set this as the watch target.

Line(x,y) = (a*x + b) - y
plot cos(x) watch Line(x,y)=0, a*x + b

During evaluation the corresponding values of x, y, and z at that point are available to the function whether or
not they are named parameters. So the variant below achieves the same result as the previous example.

Line(dummy1,dummy2) = dummy1*x + dummy2 - y
plot cos(x) watch Line(a,b)=0, a*x + b

The same again, using a function block instead of an in-line function.
function $Line() << EOF

return (a*x + b) - y
EOF
plot cos(x) watch $Line()=0, a*x + b

0.40.4
0.60.60.80.81.01.0

1.21.2

1.41.4
1.61.6

1.61.6

1.81.8

1.81.8

2.02.0
2.02.0

-1.0 0.0 1.0 2.0

0.0

1.0

2.0

A more interesting use is to constrain the placement of
contour labels on a contour plot. Gnuplot has several op-
tions to modify the automatic placement of contour labels
see set cntrlabel (p. 191)) but these may not be satisfac-
tory for labelling crowded plots. You can instead place
labels only at positions where a watchpoint function tar-
get is satisfied.

Here is an example where a straight line across the area
of the plot is chosen and contour labels are placed only
where a contour crosses one that line. For the complete worked example see demo watch_contours.dem.

set style watchpoint labels center nopoint font ",9"
set style textbox noborder opaque margins 0.5, 0.5
line(a,b) = a*x+b - y
a = 0.6; b = 0.5

set contours
set cntrparam levels incr 0, .2, 4
set view map

splot f(x,y) with lines nosurface watch line(a,b)=0 label sprintf("%.1f",z)

Each label is generated using the z value of that contour. The default watchpoint labels " x : y " would not be
useful for this plot so we provide a formatting function that prints the z value of the contour.

Watch mouse

Using the current mouse x coordinate as a watch target generates a label that moves along the line of the plot
tracking the horizontal position of the mouse. This allows simultaneous readout of the y values of multiple plot
lines in the same graph. The appearance of the point indicating the current position and of the label can be
modified by set style watchpoint and set style textbox

Example:
set style watchpoint labels point pt 6 ps 2 boxstyle 1
set style textbox 1 lw 0.5 opaque
plot for [i=1:N] "file.dat" using 1:(column(i)) watch mouse

90 gnuplot 6.1

Part II

Plotting styles
Many plotting styles are available in gnuplot. They are listed alphabetically below. The commands set style
data and set style function change the default plotting style for subsequent plot and splot commands.

You can also specify the plot style explicitly as part of the plot or splot command. If you want to mix plot
styles within a single plot, you must specify the plot style for each component.

Example:
plot 'data' with boxes, sin(x) with lines

Each plot style has its own expected set of data entries in a data file. For example, by default the lines style
expects either a single column of y values (with implicit x ordering) or a pair of columns with x in the first and
y in the second. For more information on how to fine-tune how columns in a file are interpreted as plot data,
see using (p. 167).

Arrows

The 2D arrows style draws an arrow with specified length and orientation angle at each point (x,y). Additional
input columns may be used to provide variable (per-datapoint) color information or arrow style. It is identical
to the 2D style with vectors except that each arrow head is positioned using length + angle rather than delta_x
+ delta_y. See with vectors (p. 122).

4 columns: x y length angle

The keywords with arrowsmay be followed by inline arrow style properties, a reference to a predefined arrow
style, or arrowstyle variable to load the index of the desired arrow style for each arrow from a separate column.

length> 0 is interpreted in x-axis coordinates. -1< length< 0 is interpreted in horizontal graph coordinates;
i.e. |length| is a fraction of the total graph width. The program will adjust for differences in x and y scaling or
plot aspect ratio so that the visual length is independent of the orientation angle.

angle is always specified in degrees.

Arrowstyle variable

For plot styles with arrows and with vectors, you can provide an extra column of input data that provides an
integer arrow style corresponding to style previously defined using set style arrow.

Example:
set style arrow 1 head nofilled linecolor "blue" linewidth 0.5
set style arrow 2 head filled linecolor "red" linewidth 1.0
column 5 is expected to contain either 1 or 2,
determining which of the two previous defined styles to use
plot DATA using 1:2:3:4:5 with arrows arrowstyle variable

gnuplot 6.1 91

Bee swarm plots

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

A B

swarm (default)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

A B

square
"Bee swarm" plots result from applying jitter to separate
overlapping points. A typical use is to compare the distri-
bution of y values exhibited by two or more categories of
points, where the category determines the x coordinate.
See the set jitter (p. 213) command for how to control
the overlap criteria and the displacement pattern used for
jittering. The plots in the figure were created by the same
plot command but different jitter settings.

set jitter
plot $data using 1:2:1 with points lc variable

Boxerrorbars

The boxerrorbars style is only relevant to 2D data plotting. It is a combination of the boxes and yerrorbars
styles. It requires 3, 4, or 5 columns of data. An additional (4th, 5th or 6th) input column may be used to
provide variable (per-datapoint) color information (see linecolor (p. 65) and rgbcolor variable (p. 67)).

3 columns: x y ydelta
4 columns: x y ydelta xdelta (xdelta <= 0 means use boxwidth)
5 columns: x y ylow yhigh xdelta (xdelta <= 0 means use boxwidth)

with boxerrorbars

The boxwidth will come from the fourth column if the
y errors are given as "ydelta" or from the fifth column
if they are in the form of "ylow yhigh". If xdelta is
zero or negative, the width of the box is controlled by the
value previously given for boxwidth. See set boxwidth
(p. 188).

A vertical error bar is drawn to represent the y error in
the same way as for the yerrorbars style, either from y-
ydelta to y+ydelta or from ylow to yhigh, depending on
how many data columns are provided. The line style used for the error bar may be controlled using set bars
(p. 202). Otherwise the error bar will match the border of the box.

DEPRECATED: Old versions of gnuplot treated boxwidth = -2.0 as a special case for four-column data with
y errors in the form "ylow yhigh". In this case boxwidth was adjusted to leave no gap between adjacent boxes.
This treatment is retained for backward-compatibility but may be removed in a future version.

Boxes

In 2D plots the boxes style draws a rectangle centered about the given x coordinate that extends from the x
axis, i.e. from y=0 not from the graph border, to the given y coordinate. The width of the box can be provided
in an additional input column or controlled by set boxwidth. Otherwise each box extends to touch the adjacent
boxes.

92 gnuplot 6.1

In 3D plots the boxes style draws a box centered at the given [x,y] coordinate that extends from the plane at
z=0 to the given z coordinate. The width of the box on x can be provided in a separate input column or via set
boxwidth. The depth of the box on y is controlled by set boxdepth. Boxes do not automatically expand to
touch each other as in 2D plots.

2D boxes

plot with boxes uses 2 or 3 columns of basic data. Additional input columnsmay be used to provide information
such as variable line or fill color. See rgbcolor variable (p. 67).

2 columns: x y
3 columns: x y x_width

with boxes

The width of the box is obtained in one of three ways. If
the input data has a third column, this will be used to set
the box width. Otherwise if a width has been set using the
set boxwidth command, this will be used. If neither of
these is available, the width of each box will be calculated
so that it touches the adjacent boxes.

The box interiors are drawn using the current fillstyle.
Alternatively a fillstyle may be specified in the plot com-
mand. See set style fill (p. 261). If no fillcolor is given
in the plot command, the current line color is used.

Examples:

To plot a data file with solid filled boxes with a small vertical space separating them (bargraph):
set boxwidth 0.9 relative
set style fill solid 1.0
plot 'file.dat' with boxes

To plot a sine and a cosine curve in pattern-filled boxes style with explicit fill color:
set style fill pattern
plot sin(x) with boxes fc 'blue', cos(x) with boxes fc 'gold'

The sin plot will use pattern 0; the cos plot will use pattern 1. Any additional plots would cycle through the
patterns supported by the terminal driver.

3D boxes

splot with boxes requires at least 3 columns of input data. Additional input columns may be used to provide
information such as box width or fill color.

3 columns: x y z
4 columns: x y z [x_width or color]
5 columns: x y z x_width color

The last column is used as a color only if the splot command specifies a variable color mode. Examples
splot 'blue_boxes.dat' using 1:2:3 fc "blue"
splot 'rgb_boxes.dat' using 1:2:3:4 fc rgb variable
splot 'category_boxes.dat' using 1:2:3:4:5 lc variable

gnuplot 6.1 93

In the first example all boxes are blue and have the width previously set by set boxwidth. In the second example
the box width is still taken from set boxwidth because the 4th column is interpreted as a 24-bit RGB color.
The third example command reads box width from column 4 and interprets the value in column 5 as an integer
linetype from which the color is derived.

 1 2 3 4 5 6 7 8 9 10
 1

 2
 3

 4
 5

 0

 5

 10

 15

 20

 25

 30

Full treatment: 3D boxes with pm3d depth sorting and lighting
By default boxes have no thickness; they consist of a sin-
gle rectangle parallel to the xz plane at the specified y
coordinate. You can change this to a true box with four
sides and a top by setting a non-zero extent on y. See set
boxdepth (p. 189).

3D boxes are processed as pm3d quadrangles rather than
as surfaces. Because of this the front/back order of draw-
ing is not affected by set hidden3d. See set pm3d
(p. 248). In gnuplot version 6 the edges of the box are
colored by the border color of the plot’s fill style; this is a change from version 5. For best results use a combi-
nation of set pm3d depthorder base and set pm3d lighting.

Boxplot

Boxplots are a commonway to represent a statistical distribution of values. Gnuplot boxplots are always vertical,
showing a distribution of values along y. Quartile boundaries are determined such that 1/4 of the points have
a y value equal or less than the first quartile boundary, 1/2 of the points have y value equal or less than the
second quartile (median) value, etc. A box is drawn around the region between the first and third quartiles with
a horizontal line at the median value. Whiskers extend from the box to user-specified limits. Points that lie
outside these limits (outliers) are drawn individually. The width of the boxplot can be controlled either by set
boxwidth or by providing it in a third field of the using specifier in the plot command.

Syntax
2 columns: x-position y-value
3 columns: x-position y-value boxwidth
4 columns: first-x-position y-value boxwidth category

 0

 20

 40

 60

 80

 100

 120

 140

 160

A B

The horizontal position of a boxplot is usually given as a
constant value in the first field (x-position) of the using
specifier in the plot command. You can place an identi-
fying label at this position under the boxplot by adding
an xticlabel specifier in the plot command (two or three
column syntax) or by providing it as a string in a separate
data column (four column syntax). Both examples below
should produce a plot with layout similar to the one in the
boxplot example figure.

Examples
#
Compare distribution of y-values from two different files.
set border 2 # left-hand border only
set xtics nomirror scale 0 # no tickmarks; only labels
set xtics ("A" 1., "B" 2.) # x-coords in first field of `using` below
set ytics rangelimited nomirror

94 gnuplot 6.1

plot 'dataset_A' using (1.):2 with boxplot, \
'dataset_B' using (2.):2 with boxplot

#
Compare y-values from two categories of data in the same file.
Each line contains a category string ("A" or "B") in column 1 and
a data value in column 2. Labels auto-generated from category string.
start_x = 1.0
boxwidth = 0.5
plot 'mixeddata' using (start_x):2:(boxwidth):1 with boxplot

By default a single boxplot is produced from all y values found in the column specified by the second field of
the using specification. If a fourth field is given in the using specification the content of that input column will
be used as a string that identifies a discrete category. A separate boxplot will be drawn for each category found
in the input. The horizontal separation between these boxplots is 1.0 by default; it can be changed by set style
boxplot separation. By default the category identifier is shown as a tic label below each boxplot. Note that
if category column contains numerical values they are nevertheless treated as strings and thus do not usually
correspond to the x coordinate of the boxplot.

The order of data points in the input file is not important. If there are multiple blocks of data in the input file
separated by two blank lines, individual blocks may be selected with the index keyword or by using the the
data block number (column(-2)) as a level value in the fourth column. See pseudocolumns (p. 169), index
(p. 161).

By default the whiskers extend vertically from the ends of the box to the most distant point whose y value lies
within 1.5 times the interquartile range. By default outliers are drawn as circles (point type 7). The width of
bars at the end of the whiskers may be controlled using set bars (p. 202) or set errorbars (p. 202). Multiple
outliers with the same y value are displaced horizontally by one character width. This spacing can be controlled
by set jitter.

These default properties may be changed using the set style boxplot command. See set style boxplot (p. 260),
bars (p. 202), boxwidth (p. 188), fillstyle (p. 261), candlesticks (p. 95).

gnuplot 6.1 95

Boxxyerror

with boxxyerror

The boxxyerror plot style is only relevant to 2D data plot-
ting. It is similar to the xyerrorbars style except that it
draws rectangular areas rather than crosses. It uses either
4 or 6 basic columns of input data. An additional (5th or
7th) input column may be used to provide variable (per-
datapoint) color information (see linecolor (p. 65) and
rgbcolor variable (p. 67)).

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

The boxwidth and height are determined from the x and y errors in the sameway as they are for the xyerrorbars
style — either from xlow to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta and from y-ydelta to
y+ydelta, depending on how many data columns are provided.

The 6 column form of the command provides a convenient way to plot rectangles with arbitrary x and y bounds.

The interior of the boxes is drawn according to the current fillstyle. See set style fill (p. 261) and boxes (p. 91)
for details. Alternatively a new fillstyle may be specified in the plot command.

Candlesticks

with candlesticks

The candlesticks style can be used for 2D data plotting of
financial data or for generating box-and-whisker plots of
statistical data. The symbol is a rectangular box, centered
horizontally at the x coordinate and limited vertically by
the opening and closing prices. A vertical line segment at
the x coordinate extends up from the top of the rectangle
to the high price and another down to the low. The verti-
cal line will be unchanged if the low and high prices are
interchanged.

Five columns of basic data are required:
financial data: date open low high close
whisker plot: x box_min whisker_min whisker_high box_high

The width of the rectangle can be controlled by the set boxwidth command. For backwards compatibility
with earlier gnuplot versions, when the boxwidth parameter has not been set then the width of the candlestick
rectangle is taken from set errorbars <width>.

Alternatively, an explicit width for each box-and-whiskers grouping may be specified in an optional 6th column
of data. The width must be given in the same units as the x coordinate.

An additional (6th, or 7th if the 6th column is used for width data) input column may be used to provide
variable (per-datapoint) color information (see linecolor (p. 65) and rgbcolor variable (p. 67)).

By default the vertical line segments have no crossbars at the top and bottom. If you want crossbars, which are
typically used for box-and-whisker plots, then add the keyword whiskerbars to the plot command. By default
these whiskerbars extend the full horizontal width of the candlestick, but you can modify this by specifying a
fraction of the full width.

96 gnuplot 6.1

The usual convention for financial data is that the rectangle is empty if (open < close) and solid fill if (close <
open). This is the behavior you will get if the current fillstyle is set to "empty". See fillstyle (p. 261). If you
set the fillstyle to solid or pattern, then this will be used for all boxes independent of open and close values. See
also set errorbars (p. 202) and financebars (p. 101). See also the candlestick

and finance

demos.

Note: To place additional symbols or lines on a box-and-whisker plot requires additional plot components.
The first example below uses a second component that squashes the candlestick onto a single line placed at the
median value.
Data columns:X Min 1stQuartile Median 3rdQuartile Max
set errorbars 4.0
set style fill empty
plot 'stat.dat' using 1:3:2:6:5 with candlesticks title 'Quartiles', \

'' using 1:4:4:4:4 with candlesticks lt -1 notitle

Plot with crossbars on the whiskers, crossbars are 50% of full width
plot 'stat.dat' using 1:3:2:6:5 with candlesticks whiskerbars 0.5

See set boxwidth (p. 188), set errorbars (p. 202), set style fill (p. 261), and boxplot (p. 93).

Circles

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

The circles style plots a circle with an explicit radius at
each data point. The radius is always interpreted in the
units of the plot’s horizontal axis (x or x2). The scale on
y and the aspect ratio of the plot are both ignored. If the
radius is not given in a separate column for each point it
is taken from set style circle. In this case the radius may
use graph or screen coordinates.

Many combinations of per-point and previously set prop-
erties are possible. For 2D plots these include

using x:y
using x:y:radius
using x:y:color
using x:y:radius:color
using x:y:radius:arc_begin:arc_end
using x:y:radius:arc_begin:arc_end:color

By default a full circle will be drawn. The result is similar to using a points plot with variable size points and
pointtype 7, except that the circles scale with the x axis range. It is possible to instead plot arc segments by
specifying a start and end angle (in degrees) in columns 4 and 5.

A per-circle color may be provided in the last column of the using specifier. In this case the plot command
must include a corresponding variable color term such as lc variable or fillcolor rgb variable.

See set style circle (p. 264), set object circle (p. 236), and set style fill (p. 261).

For 3D plots the using specifier must contain
splot DATA using x:y:z:radius:color

http://www.gnuplot.info/demo/candlesticks.html
http://www.gnuplot.info/demo/finance.html

gnuplot 6.1 97

where the variable color column is optional.

Examples:
draws circles whose area is proportional to the value in column 3
set style fill transparent solid 0.2 noborder
plot 'data' using 1:2:(sqrt($3)) with circles, \

'data' using 1:2 with linespoints

draws Pac-men instead of circles
plot 'data' using 1:2:(10):(40):(320) with circles

draw a pie chart with inline data
set xrange [-15:15]
set style fill transparent solid 0.9 noborder
plot '-' using 1:2:3:4:5:6 with circles lc var
0 0 5 0 30 1
0 0 5 30 70 2
0 0 5 70 120 3
0 0 5 120 230 4
0 0 5 230 360 5
e

Contourfill

Syntax:
splot f(x,y) with contourfill {at base} {fillstyle <style>}

contourfill + contour linesContourfill is a 3D plotting style used to color a pm3d
surface in slices along the z axis. It can be used in 2D
projection (set view map or with contourfill at base) to
create 2D contour plots with solid color between contour
lines. The slice boundaries and the assigned colors are
both controlled using set contourfill (p. 196). See also
pm3d (p. 248), zclip (p. 248).

The default fill properties are taken from set pm3d but
may be modified by providing a different fillstyle in the
splot command.

This style can be combined with set contours to superimpose contour lines that bound the slices. Care must
be taken that the slice boundaries from set contourfill match the contour boundaries from set cntrparam.

slice boundaries determined by ztics
coloring set by palette mapping the slice midpoint z value
set pm3d border retrace
set contourfill ztics
set ztics -20, 5, 20
set contour
set cntrparam cubic levels increment -20, 5, 20
set cntrlabel onecolor
set view map
splot g(x,y) with contourfill, g(x,y) with lines nosurface

By default the contours are rendered onto the original 3D surface. Plotting with contourfill at base instead
projects the colored surface onto the base plane. To draw both a surface and its projected contour coloring

set hidden3d front
splot f(x,y) with lines, f(x,y) with contourfill at base

98 gnuplot 6.1

Dots

The dots style plots a tiny dot at each point; this is useful
for scatter plots with many points. Either 1 or 2 columns
of input data are required in 2D. Three columns are re-
quired in 3D.

For some terminals (post, pdf) the size of the dot can be
controlled by changing the linewidth.

1 column y # x is row number
2 columns: x y
3 columns: x y z # 3D only (splot)

gnuplot 6.1 99

Ellipses

with ellipses
The ellipses style plots an ellipse at each data point. This
style is only relevant for 2D plotting. Each ellipse is de-
scribed in terms of its center, major and minor diameters,
and the angle between its major diameter and the x axis.

2 columns: x y
3 columns: x y diam (used for both major and minor axes)
4 columns: x y major_diam minor_diam
5 columns: x y major_diam minor_diam angle

If only two input columns are present, they are taken as the coordinates of the centers, and the ellipses will be
drawn with the default extent (see set style ellipse (p. 265)). The orientation of the ellipse, which is defined as
the angle between the major diameter and the plot’s x axis, is taken from the default ellipse style (see set style
ellipse (p. 265)).

If three input columns are provided, the third column is used for both diameters. The orientation angle defaults
to zero.

If four columns are present, they are interpreted as x, y, major diameter, minor diameter. Note that these are
diameters, not radii. If either diameter is negative, both diameters will be taken from the default set by set
style ellipse.

An optional 5th column may specify the orientation angle in degrees. The ellipses will also be drawn with their
default extent if either of the supplied diameters in the 3-4-5 column form is negative.

In all of the above cases, optional variable color data may be given in an additional last (3th, 4th, 5th or 6th)
column. See colorspec (p. 65).

units keyword: If units xy is included in the plot specification, the major diameter is interpreted in the units
of the plot’s horizontal axis (x or x2) while the minor diameter in that of the vertical axis (y or y2). If the x
and y axis scales are not equal, the major/minor diameter ratio will no longer be correct after rotation. units
xx interprets both diameters in units of the x axis. units yy interprets both diameters in units of the y axis. In
the latter two cases the ellipses will have the correct aspect ratio even if the plot is resized. If units is omitted
from the plot command, the setting from set style ellipse will be used.

Example (draws ellipses, cycling through the available line types):

plot 'data' using 1:2:3:4:(0):0 with ellipses

See also set object ellipse (p. 235), set style ellipse (p. 265) and fillstyle (p. 261).

Filledcurves

100 gnuplot 6.1

 5

 10

 15

 20

 25

 30

 250 300 350 400 450 500

with filledcurves
above
below

curve 1
curve 2

The filledcurves style is available in both 2D and (since
version 6.1) 3D.

The 2D style has three variants. The first two variants
require either a single function or two columns (x,y) of
input data.

Syntax for 2D:
plot f(x) with filledcurves [option]
plot DATA using 1:2 with filledcurves [option]
plot DATA using 1:2:3 with filledcurves [option]

where the option can be one of the following
closed
{above|below} x1 x2 y r=<a> xy=<x>,<y>
between

The first variant, closed, treats the curve itself as a closed polygon. This is the default if there are two columns
of input data.

filledcurves closed ... just filled closed curve,

The second variant is to fill the area between the curve and a given axis, a horizontal or vertical line, or a point.
This can be further restricted to filling the area above or below the specified line.

filledcurves x1 ... x1 axis,
filledcurves x2 ... x2 axis, etc for y1 and y2 axes,
filledcurves y=42 ... line at y=42, i.e. parallel to x axis,
filledcurves xy=10,20 ... point 10,20 of x1,y1 axes (arc-like shape).
filledcurves above r=1.5 the area of a polar plot outside radius 1.5

The third variant fills the area between two curves sampled at the same set of x coordinates. It requires three
columns of input data (x, y1, y2). This is the default if there are three or more columns of input data.

 1

 10

 100

 1000

 0 100 200 300 400 500 600

Shaded error region
Monotonic spline through data

R
at

e

Time (sec)

Ag 108 decay data
If you have a y value in column 2 and an associated error
value in column 3 the three column variant can be used
in combination with a solid line to show the area of un-
certainty on either side of that line. See also the similar
3D plot style zerrorfill (p. 127).

plot $DAT using 1:($2-$3):($2+$3) with filledcurves, \
$DAT using 1:2 smooth mcs with lines

Above/below

The above and below options apply both to commands of the form
plot f(x) with filledcurves {above|below} {y|r}=<val>

and to commands of the form
plot DATA with filledcurves using 1:2:3 with filledcurves {above|below}

In either case the option limits the filled area to one side of the bounding line or curve.

Zooming a filled curve drawn from a datafile may produce empty or incorrect areas because gnuplot is clipping
points and lines, and not areas.

If the values <x>, <y>, or <a> are outside the drawing boundary they are moved to the graph boundary.
Then the actual fill area in the case of option xy=<x>,<y> will depend on xrange and yrange.

gnuplot 6.1 101

3D waterfall plots
set style fill solid border lc "black"
splot for [scan=N:1:-1] DATA index scan \

using x:y:z with filledcurves fc background

In gnuplot 6.1 the 3D filledcurves plot style is designed to display a set of two-dimensional curves that are
incrementally displaced along an orthogonal axis. Normally x or y is a fixed value for each curve so that the
lines either represent z=f(x) at sequential y values or z=f(y) at sequential x values. This is convenient for
drawing waterfall plots.

In order to ensure that foreground curves occlude more distant ones it is important to order the sequence of
curves from back to front.

See also fenceplots (p. 127).

Fill properties

Plotting with filledcurves can be further customized by giving a fillstyle (solid/transparent/pattern) or a fill-
color. If no fillstyle (fs) is given in the plot command then the current default fill style is used. See set style fill
(p. 261). If no fillcolor (fc) is given in the plot command, the current line color is used.

The {{no}border} property of the fillstyle is honored by filledcurves mode closed, the default. It is ignored by
all other filledcurves modes. Example:

plot 'data' with filledcurves fc "cyan" fs solid 0.5 border lc "blue"

Financebars

The financebars style is only relevant for 2D data plotting of financial data. It requires 1 x coordinate (usually
a date) and 4 y values (prices).

5 columns: date open low high close

An additional (6th) input column may be used to provide variable (per-record) color information (see linecolor
(p. 65) and rgbcolor variable (p. 67)).

with financebars

The symbol is a vertical line segment, located horizontally
at the x coordinate and limited vertically by the high and
low prices. A horizontal tic on the left marks the open-
ing price and one on the right marks the closing price.
The length of these tics may be changed by set error-
bars. The symbol will be unchanged if the high and low
prices are interchanged. See set errorbars (p. 202) and
candlesticks (p. 95), and also the finance demo.

Fillsteps
plot <data> with fillsteps {above|below} {y=<baseline>}

http://www.gnuplot.info/demo/finance.html

102 gnuplot 6.1

with fillsteps
with steps

data points

The fillsteps style is only relevant to 2D plotting. It is ex-
actly like the style steps except that the area between the
curve and the baseline (default y=0) is filled in the cur-
rent fill style. The options above and below fill only the
portion to one side of the baseline. Note that in moving
from one data point to the next, both steps and fillsteps
first trace the change in x coordinate and then the change
in y coordinate. See steps (p. 122).

1 column: y # implicit x from line number (column 0)
2 columns: x y

Fsteps

with fsteps
data points

The fsteps style is only relevant to 2D plotting. It con-
nects consecutive points with two line segments: the first
from (x1,y1) to (x1,y2) and the second from (x1,y2) to
(x2,y2). The input column requires are the same as for
plot styles lines and points. The difference between
fsteps and steps is that fsteps traces first the change in y
and then the change in x. steps traces first the change in
x and then the change in y.

See also steps demo.

1 column: y # implicit x from line number (column 0)
2 columns: x y

Histeps

with histeps
data points

The histeps style is only relevant to 2D plotting. It
is intended for plotting histograms. Y-values are as-
sumed to be centered at the x-values; the point at x1 is
represented as a horizontal line from ((x0+x1)/2,y1) to
((x1+x2)/2,y1). The lines representing the end points are
extended so that the step is centered on at x. Adjacent
points are connected by a vertical line at their average x,
that is, from ((x1+x2)/2,y1) to ((x1+x2)/2,y2). The input
column requires are the same as for plot styles lines and
points.

If autoscale is in effect, it selects the xrange from the data rather than the steps, so the end points will appear
only half as wide as the others. See also steps demo.

1 column: y # implicit x from line number (column 0)
2 columns: x y

http://www.gnuplot.info/demo/steps.html
http://www.gnuplot.info/demo/steps.html

gnuplot 6.1 103

Heatmaps

Several of gnuplot’s plot styles can be used to create heat maps. The choice of which style to use is dictated by
the type of data.

 0

 1

 2

 3

 0 1 2 3 4

2D Heat map from in-line array of valuesPixel-based heat maps all have the property that each
pixel in the map corresponds exactly to one original data
value. The pixel-based image styles require a regular rect-
angular grid of data values; see with image (p. 110).
However it is possible to handle missing grid values (see
sparse (p. 296)) and it is also possible to mask out only
a portion of the grid for display (see masking (p. 115)).
Unless there are a large number of grid elements, it is usu-
ally good to render each rectangular element separately
(with image pixels) so that smoothing or lossy compres-
sion is not applied to the resulting "image".

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Polar heatmap composed of sectors positioned on a cartesian x/y plane
A polar equivalent to image pixel-based heat maps can be
generated using 2D plot style sectors. Each input point
corresponds to exactly one annular sector of a polar grid,
equivalent to a pixel. Unlike the polar grid surface option
described below, any number of individual grid sectors
may be provided. This plot style can be used in either
polar or cartesian coordinate plots to place polar sectors
anywhere on the graph. The figure here shows two halves
of a polar heat map displaced across the origin by +/- Δx
on a cartesian coordinate plot. Seewith sectors (p. 119).

Cluster of points
 defining the mask region

pm3d surface masked by
convex hull of the cluster

If the data points do not constitute a regular rectangular
grid, they can often be used to fit a gridded surface by
interpolation or by splines. Alternatively a point-density
function can be mapped onto a gridded plane or smooth
surface. See set dgrid3d (p. 200). The gridded sur-
face can then be plotted as a pm3d surface (see mask-
ing (p. 115) example). In this case the points on the heat
map do not retain a one-to-one correspondence with the
input data. I.e. the validity of the heat map represenation
is only as good as the gridded approximation. The demo
collection has examples of generating 2D heatmaps from a set of points heatmap_points.dem

http://www.gnuplot.info/demo/heatmap_points.html

104 gnuplot 6.1

 50 100 150 200

If your copy of gnuplot was built with the –enable-polar-
grid option, polar coordinate data points can be used to
generate a 2D polar heat map in which each "pixel" cor-
responded to a pre-determined range of theta and r. See
set polar grid (p. 254) and with surface (p. 122). This
process is exactly analogous to the use of set dgrid3d and
with pm3d except that it operates in 2D polar coordinate
space.

Histograms

The histograms style is only relevant to 2D plotting. It
produces a bar chart from a sequence of parallel data columns. Each element of the plot commandmust specify
a single input data source (e.g. one column of the input file), possibly with associated tic values or key titles.
Four styles of histogram layout are currently supported.

set style histogram clustered {gap <gapsize>}
set style histogram errorbars {gap <gapsize>} {<linewidth>}
set style histogram rowstacked
set style histogram columnstacked
set style histogram {title font "name,size" tc <colorspec>}

The default style corresponds to set style histogram clustered gap 2. In this style, each set of parallel data
values is collected into a group of boxes clustered at the x-axis coordinate corresponding to their sequential
position (row #) in the selected datafile columns. Thus if <n> datacolumns are selected, the first cluster is
centered about x=1, and contains<n> boxes whose heights are taken from the first entry in the corresponding
<n> data columns. This is followed by a gap and then a second cluster of boxes centered about x=2 corre-
sponding to the second entry in the respective data columns, and so on. The default gap width of 2 indicates
that the empty space between clusters is equivalent to the width of 2 boxes. All boxes derived from any one
column are given the same fill color and/or pattern; however see the subsection histograms colors (p. 107).

Each cluster of boxes is derived from a single row of the input data file. It is common in such input files that
the first element of each row is a label. Labels from this column may be placed along the x-axis underneath the
appropriate cluster of boxes with the xticlabels option to using.

The errorbars style is very similar to the clustered style, except that it requires additional columns of input
for each entry. The first column holds the height (y value) of that box, exactly as for the clustered style.

2 columns: y yerr bar extends from y-yerr to y+err
3 columns: y ymin ymax bar extends from ymin to ymax

The appearance of the error bars is controlled by the current value of set errorbars and by the optional
<linewidth> specification.

Two styles of stacked histogram are supported, chosen by the command set style histogram
{rowstacked|columnstacked}. In these styles the data values from the selected columns are collected into
stacks of boxes. Positive values stack upwards from y=0; negative values stack downwards. Mixed positive
and negative values will produce both an upward stack and a downward stack. The default stacking mode is
rowstacked.

The rowstacked style places a box resting on the x-axis for each data value in the first selected column; the
first data value results in a box a x=1, the second at x=2, and so on. Boxes corresponding to the second and
subsequent data columns are layered on top of these, resulting in a stack of boxes at x=1 representing the first

gnuplot 6.1 105

data value from each column, a stack of boxes at x=2 representing the second data value from each column,
and so on. All boxes derived from any one column are given the same fill color and/or pattern (see set style fill
(p. 261)).

The columnstacked style is similar, except that each stack of boxes is built up from a single data column. Each
data value from the first specified data column yields a box in the stack at x=1, each data value from the second
specified data column yields a box in the stack at x=2, and so on. In this style the color of each box is taken
from the row number, rather than the column number, of the corresponding data field.

Box widths may be modified using the set boxwidth command. Box fill styles may be set using the set style
fill command.

Histograms always use the x1 axis, but may use either y1 or y2. If a plot contains both histograms and other
plot styles, the non-histogram plot elements may use either the x1 or the x2 axis.

One additional style option set style histogram nokeyseparators is relevant only to plots that contain multiple
histograms. See newhistogram (p. 106) for additional discussion of this case.

Examples:

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

ClassA
ClassB

Suppose that the input file contains data values in columns
2, 4, 6, ... and error estimates in columns 3, 5, 7, ...
This example plots the values in columns 2 and 4 as a
histogram of clustered boxes (the default style). Because
we use iteration in the plot command, any number of data
columns can be handled in a single command. See plot
for (p. 174).

set boxwidth 0.9 relative
set style data histograms
set style histogram cluster
set style fill solid 1.0 border lt -1
plot for [COL=2:4:2] 'file.dat' using COL

This will produce a plot with clusters of two boxes (vertical bars) centered at each integral value on the x axis. If
the first column of the input file contains labels, they may be placed along the x-axis using the variant command

plot for [COL=2:4:2] 'file.dat' using COL:xticlabels(1)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

A
B

Histogram with error barsIf the file contains both magnitude and range information
for each value, then error bars can be added to the plot.
The following commands will add error bars extending
from (y-<error>) to (y+<error>), capped by horizontal
bar ends drawn the same width as the box itself. The
error bars and bar ends are drawn with linewidth 2, using
the border linetype from the current fill style.

set errorbars fullwidth
set style fill solid 1 border lt -1
set style histogram errorbars gap 2 lw 2
plot for [COL=2:4:2] 'file.dat' using COL:COL+1

This shows how to plot the same data as a rowstacked histogram. Just to be different, the plot command in this
example lists the separate columns individually rather than using iteration.

set style histogram rowstacked
plot 'file.dat' using 2, '' using 4:xtic(1)

106 gnuplot 6.1

 0

 2

 4

 6

 8

 10

ClassA
ClassB

RowstackedThis will produce a plot in which each vertical bar cor-
responds to one row of data. Each vertical bar contains
a stack of two segments, corresponding in height to the
values found in columns 2 and 4 of the datafile. Finally,

the commands
set style histogram columnstacked
plot 'file.dat' using 2, '' using 4

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ClassA ClassB

Columnstackedwill produce two vertical stacks, one for each column of
data. The stack at x=1 will contain a box for each entry
in column 2 of the datafile. The stack at x=2 will contain
a box for each parallel entry in column 4 of the datafile.

Because this interchanges gnuplot’s usual interpretation
of input rows and columns, the specification of key titles
and x-axis tic labels must also be modified accordingly.
See the comments given below.

set style histogram columnstacked
plot '' u 5:key(1) # uses first column to generate key titles
plot '' u 5 title columnhead # uses first row to generate xtic labels

Note that the two examples just given present exactly the same data values, but in different formats.

Newhistogram

Syntax:
newhistogram {"<title>" {font "name,size"} {tc <colorspec>}}

{lt <linetype>} {fs <fillstyle>} {at <x-coord>}

More than one set of histograms can appear in a single plot. In this case you can force a gap between them,
and a separate label for each set, by using the newhistogram command. For example

set style histogram cluster
plot newhistogram "Set A", 'a' using 1, '' using 2, '' using 3, \

newhistogram "Set B", 'b' using 1, '' using 2, '' using 3

The labels "Set A" and "Set B" will appear beneath the respective sets of histograms, under the overall x axis
label.

The newhistogram command can also be used to force histogram coloring to begin with a specific color (line-
type). By default colors will continue to increment successively even across histogram boundaries. Here is an
example using the same coloring for multiple histograms

plot newhistogram "Set A" lt 4, 'a' using 1, '' using 2, '' using 3, \
newhistogram "Set B" lt 4, 'b' using 1, '' using 2, '' using 3

Similarly you can force the next histogram to begin with a specified fillstyle. If the fillstyle is set to pattern,
then the pattern used for filling will be incremented automatically.

Starting a new histogram will normally add a blank entry to the key, so that titles from this set of histogram
components will be separated from those of the previous histogram. This blank line may be undesirable if the
components have no individual titles. It can be suppressed by modifying the style with set style histogram
nokeyseparators.

gnuplot 6.1 107

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

ClassA
ClassB

ClassA
ClassB

Set BSet A

The at <x-coord> option sets the x coordinate position
of the following histogram to <x-coord>. For example

set style histogram cluster
set style data histogram
set style fill solid 1.0 border -1
set xtic 1 offset character 0,0.3
plot newhistogram "Set A", \

'file.dat' u 1 t 1, '' u 2 t 2, \
newhistogram "Set B" at 8, \
'file.dat' u 2 t 2, '' u 2 t 2

will position the second histogram to start at x=8.

Automated iteration over multiple columns

If you want to create a histogram from many columns of data in a single file, it is very convenient to use the
plot iteration feature. See plot for (p. 174). For example, to create stacked histograms of the data in columns
3 through 8

set style histogram columnstacked
plot for [i=3:8] "datafile" using i title columnhead

Histogram color assignments

The program assigns a color to each component box in a histogram automatically such that equivalent data
values maintain a consistent color wherever they appear in the rows or columns of the histogram. The colors
are taken from successive linetypes, starting either with the next unused linetype or an initial linetype provided
in a newhistogram element.

In some cases this mechanism fails due to data sources that are not truly parallel (i.e. some files contain
incomplete data). In other cases there may be additional properties of the data that could be visualized by, say,
varying the intensity or saturation of their base color. As an alternative to the automatic color assignment, you
can provide an explicit color value for each data value in a second using column via the linecolor variable
or rgb variable mechanism. See colorspec (p. 65). Depending on the layout of your data, the color category
might correspond to a row header or a column header or a data column. Note that you will probably have to
customize the key sample colors to match (see keyentry (p. 215)).

Example: Suppose file_001.dat through file_008.dat contain one column with a category identifier A, B, C, ...
and a second column with a data value. Not all of the files contain a line for every category, so they are not truly
parallel. The program would be wrong to assign the same color to the value from line N in each file. Instead
we assign a color based on the category in column 1.

file(i) = sprintf("file_%03d.dat",i)
array Category = ["A", "B", "C", "D", "E", "F"]
color(c) = index(Category, strcol(c))
set style data histogram
plot for [i=1:8] file(i) using 2:(color(1)) linecolor variable

A more complete example including generation of a custom key is in the demo collection
histogram_colors.dem

http://www.gnuplot.info/demo/histogram_colors.html

108 gnuplot 6.1

Hsteps

The 2D plotting style with hsteps renders a horizontal line segment ("step") for each data point. The step
may extend to the left, to the right, or to both sides of the point’s x-coordinate. Additional keywords control
the lines connecting adjacent steps and option area fill between the step and a baseline y value.

Syntax:

plot <data> with hsteps
{forward|backward}
{baseline|pillars|link|nolink}
{{above|below} y=<baseline>}
{offset <y-offset>}

2 columns: x y
3 columns: x y width

This plot style requires 2 or 3 columns of data. Additional input columns can be used to provide variable line
or fill colors (see rgbcolor variable (p. 67)). The x values of the input data are assumed to be monotonic.

If the width of each step is not explicitly given through a third input column, each segment’s width is calculated
so that it abuts the adjacent horizontal segments. A negative value in column 3 will be treated as a request for
a full-width step.

The forward and backward keywords can be used to specify the direction in which the horizontal segment
extends from the given x coordinate. If neither is specified, the horizontal segment extends on both sides of the
given x-value halfway to the x-value of the next adjacent point. However, for the first and last points, where
there are no corresponding outer adjacent points, the horizontal segments are extrapolated using distances to
the adjacent inner points (see histeps (p. 102), boxes (p. 91)).

The default (baseline) and pillar variants employ a baseline y value. If not provided in the plot command,
the baseline is taken to be y=0. If the plot command uses a fill style, the baseline also serves to delimit one
boundary of the fill area. Four style variants are possible.

baseline (full width)

baseline (narrow width)

baseline (default): If there is no gap along x between ad-
jacent steps, they are connected by a vertical line segment
between them. This produces a curve like the steps, his-
teps, or fsteps styles. If there is a gap between steps,
usually because the width is less than the point spacing,
the connecting line drops to the baseline and continues
along it before rising again. This produces a sequence of
rectangular pulses.

set xzeroaxis
plot $data using 1:2 with hsteps
plot $data using 1:2:(0.5) with hsteps

gnuplot 6.1 109

pillar (full width)

pillar (narrow width)

above/below baselinepillar: At each end of each step a vertical line is drawn
to the baseline. Note that no horizontal line segments are
drawn at the baseline.

plot $data using 1:2 with hsteps pillar
plot $data using 1:2:(0.5) with hsteps pillar
plot $data using 1:2:(0.5) \

with hsteps pillar above fc "blue", \
$data using 1:2:(0.5) \

with hsteps pillar below fc "red"

default
forward
backward

|

|

|

|

|

|

nolink: No connecting line is drawn between adjacent
steps. Baseline and fill properties are not relevant to this
variant.

plot $data using 1:2 with hsteps nolink, \
$data using 1:2 with hsteps nolink forward, \
$data using 1:2 with hsteps nolink backward, \
$data using 1:2 with points pt "|"

2018 2019 2020 2021 2022 2023

link: Adjacent steps steps are connected by a single
straight line segment. Depending on the step widths, this
line may be diagonal rather than vertical.

Example: The link variant can be superimposed onto
the pillar variant to produce a stacked histogram plot in
which category boundaries are connected.

set style line 11 lw 2 lc "gray" dt "."
set style line 12 lw 2 lc variable
plot $data using 1:3:(0.5) ls 11 with hsteps link, \

$data using 1:3:(0.5):1 ls 12 with hsteps pillar fs solid 0.7 border, \
$data using 1:4:(0.5) ls 11 with hsteps link, \
$data using 1:4:(0.5):1 ls 12 with hsteps pillar fs transparent pattern 1 border

Offset

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7

bit 8

g n u p l o t

bit pattern of ASCII charactersThe offset value modifies any of the with hsteps variants
by adding an increment to the y value of both the data
point itself (column 2) and the baseline of the plot it ap-
pears in. An example of use is to draw a logic circuit
timing chart in which pulse waveforms are aligned verti-
cally. In general the offset can be used to stack plots from
multiple data sets that share a common range of y values.

bit(k,char) is a function that returns 0 or 1
for the state of bit k in an ASCII character
set style fill solid 0.2 border
plot for [k=1:8] STR using 1:(bit(k,STR[$1])):(0.5) \

with hsteps fillcolor "black" offset k

110 gnuplot 6.1

Missing data

In the hsteps style, empty lines, NaN values, and missing data have distinct meanings. If an empty line is
present in the data, the data series is reset at that point. This is analogous to a blank line causing a break to start
a new curve in the case of with lines. If an x-value contains NaN, it is processed in the same manner as an
empty line. If the x-value is valid but the y-value contains NaN, no horizontal line is drawn for that particular
data point but the x-value is still used if needed to estimate the step width.

Image

The image, rgbimage, and rgbalpha plotting styles all project a uniformly sampled grid of data values onto
a plane in either 2D or 3D. The input data may be an actual bitmapped image, perhaps converted from a
standard format such as PNG, or a simple array of numerical values. These plot styles are often used to
produce heatmaps. For 2D heatmaps in polar coordinates, see set polar grid (p. 254).

 0

 1

 2

 3

 0 1 2 3 4

2D Heat map from in-line array of valuesThis figure illustrates generation of a heat map from an
array of scalar values. The current palette is used to map
each value onto the color assigned to the corresponding
pixel. See also sparse (p. 296).

plot '-' matrix with image
5 4 3 1 0
2 2 0 0 1
0 0 0 1 0
0 1 2 4 3
e
e

 0 20 40 60 80 100 120 0
 20

 40
 60

 80
 100

 120

-1.0

-0.5

0.0

0.5

1.0

RGB image mapped onto a plane in 3DEach pixel (data point) of the input 2D image will be-
come a rectangle or parallelepiped in the plot. The co-
ordinates of each data point will determine the center of
the parallelepiped. That is, an M x N set of data will
form an image with M x N pixels. This is different from
the pm3d plotting style, where an M x N set of data will
form a surface of (M-1) x (N-1) elements. The scan di-
rections for a binary image data grid can be further con-
trolled by additional keywords. See binary keywords
flipx (p. 153), keywords center (p. 153), and keywords
rotate (p. 154).

 0

 50

 100

 150

 200

Downtown S NE Suburbs
 0

 50

 100

 150

 200
Building Heights
by Neighborhood

Rescaled image used as plot element
Image data can be scaled to fill a particular rectangle
within a 2D plot coordinate system by specifying the x
and y extent of each pixel. See binary keywords dx
(p. 153) and dy (p. 153). To generate the figure at the
right, the same input image was placed multiple times,
each with a specified dx, dy, and origin. The input PNG
image of a building is 50x128 pixels. The tall building
was drawn by mapping this using dx=0.5 dy=1.5. The
short building used a mapping dx=0.5 dy=0.35.

gnuplot 6.1 111

The image style handles input pixels containing a grayscale or color palette value. Thus 2D plots (plot com-
mand) require 3 columns of data (x,y,value), while 3D plots (splot command) require 4 columns of data
(x,y,z,value).

The rgbimage style handles input pixels that are described by three separate values for the red, green, and blue
components. Thus 5D data (x,y,r,g,b) is needed for plot and 6D data (x,y,z,r,g,b) for splot. The individual
red, green, and blue components are assumed to lie in the range [0:255]. This matches the convention used in
PNG and JPEG files (see binary filetype (p. 152)). However some data files use an alternative convention in
which RGB components are floating point values in the range [0:1]. To use the rgbimage style with such data,
first use the command set rgbmax 1.0.

The rgbalpha style handles input pixels that contain alpha channel (transparency) information in addition to
the red, green, and blue components. Thus 6D data (x,y,r,g,b,a) is needed for plot and 7D data (x,y,z,r,g,b,a)
for splot. The r, g, b, and alpha components are assumed to lie in the range [0:255]. To plot data for which
RGBA components are floating point values in the range [0:1], first use the command set rgbmax 1.0.

If only a single data column is provided for the color components of either rgbimage or rgbalpha plots, it
is interpreted as containing 32 bit packed ARGB data using the convention that alpha=0 means opaque and
alpha=255 means fully transparent. Note that this is backwards from the alpha convention if alpha is supplied
in a separate column, but matches the ARGB packing convention for individual commands to set color. See
colorspec (p. 65).

Transparency

The rgbalpha plotting style assumes that each pixel of input data contains an alpha value in the range [0:255].
A pixel with alpha = 0 is purely transparent and does not alter the underlying contents of the plot. A pixel with
alpha = 255 is purely opaque. All terminal types can handle these two extreme cases. A pixel with 0 < alpha
< 255 is partially transparent. Terminal types that do not support partial transparency will round this value to
0 or 255.

Image pixels

Some terminals use device- or library-specific optimizations to render image data within a rectangular 2D area.
This sometimes produces undesirable output, e.g. inter-pixel smoothing, bad clipping or missing edges. An
example of this is the smoothing applied by web browsers when rendering svg images. The pixels keyword
tells gnuplot to use generic code to render the image pixel-by-pixel. This rendering mode is slower and may
result in larger output files, but should produce a consistent rendered view on all terminals. It may in particular
be preferable for heatmaps with a small number of pixels. Example:

plot 'data' with image pixels

Impulses

112 gnuplot 6.1

with impulses

The impulses style displays a vertical line from y=0 to the
y value of each point (2D) or from z=0 to the z value of
each point (3D). Note that the y or z values may be nega-
tive. Data from additional columns can be used to control
the color of each impulse. To use this style effectively in
3D plots, it is useful to choose thick lines (linewidth >
1). This approximates a 3D bar chart.

1 column: y
2 columns: x y # line from [x,0] to [x,y] (2D)
3 columns: x y z # line from [x,y,0] to [x,y,z] (3D)

Labels

Paris

Marseille

Lyon

Toulouse Nice

Nantes

Strasbourg

Montpellier

Bordeaux

Rennes

Le Havre
Reims

Lille

Saint-Étienne

Toulon

Grenoble

Angers

Brest

Le Mans

Dijon

Aix-en-Provence

Clermont-Ferrand

Nîmes

Amiens

Tours

Limoges

Metz

Villeurbanne

Besançon

Caen

Orléans
Mulhouse

Perpignan

Boulogne-Billancourt

Rouen

Nancy

Avignon

Nanterre

Poitiers

VersaillesCréteil

Pau

La Rochelle

Bourges

Colmar

Valence

Quimper

Troyes

Chambéry

Niort

Charleville-Mézières

Beauvais

Vannes

Montauban

Laval

Évreux

La Roche-sur-Yon

Belfort

Annecy

Blois

Châteauroux

Ajaccio

Évry

Châlons-en-Champagne

Albi

Tarbes Carcassonne

Saint-Brieuc

Angoulême

Bobigny

Bourg-en-Bresse

Bastia

Arras

Nevers

Chartres

Auxerre

Gap

Melun

Épinal

Mâcon

Mont-de-Marsan

Agen

Périgueux

Aurillac

Alençon

Pontoise

Laon

Chaumont

Rodez

Auch

Moulins

Le Puy-en-Velay

Cahors

Saint-Lô

Lons-le-Saunier

Vesoul

Bar-le-Duc

Digne-les-Bains

Tulle

Guéret

Mende

Privas

Foix

The labels style reads coordinates and text from a data
file and places the text string at the corresponding 2D or
3D position. 3 or 4 input columns of basic data are re-
quired. Additional input columns may be used to provide
properties that vary point by point such as text rotation
angle (keywords rotate variable) or color (see textcolor
variable (p. 66)).

3 columns: x y string # 2D version
4 columns: x y z string # 3D version

The font, color, rotation angle and other properties of the printed text may be specified as additional command
options (see set label (p. 218)). The example below generates a 2D plot with text labels constructed from the
city whose name is taken from column 1 of the input file, and whose geographic coordinates are in columns 4
and 5. The font size is calculated from the value in column 3, in this case the population.

CityName(String,Size) = sprintf("{/=%d %s}", Scale(Size), String)
plot 'cities.dat' using 5:4:(CityName(stringcolumn(1),$3)) with labels

If we did not want to adjust the font size to a different size for each city name, the command would be much
simpler:

plot 'cities.dat' using 5:4:1 with labels font "Times,8"

If the labels are marked as hypertext then the text only appears if the mouse is hovering over the corresponding
anchor point. See hypertext (p. 221). In this case you must enable the label’s point attribute so that there is a
point to act as the hypertext anchor:

plot 'cities.dat' using 5:4:1 with labels hypertext point pt 7

gnuplot 6.1 113

with labels

+ ⊙
♠

♣

♡

♢

•
□

+
⊙

♠

The labels style can also be used in place of the points
style when the set of predefined point symbols is not suit-
able or not sufficiently flexible. For example, here we de-
fine a set of chosen single-character symbols and assign
one of them to each point in a plot based on the value in
data column 3:
set encoding utf8
symbol(z) = "∙□+⊙♠♣♡♢"[int(z):int(z)]
splot 'file' using 1:2:(symbol($3)) with labels

This example shows use of labels with variable rotation angle in column 4 and textcolor ("tc") in column 5.
Note that variable color is always taken from the last column in the using specifier.
plot $Data using 1:2:3:4:5 with labels tc variable rotate variable

Lines

with lines
The lines style connects adjacent points with straight line
segments. It may be used in either 2D or 3D plots. The
basic form requires 1, 2, or 3 columns of input data.
Additional input columns may be used to provide infor-
mation such as variable line color (see rgbcolor variable
(p. 67)).

2D form (no "using" spec)
1 column: y # implicit x from row number
2 columns: x y

3D form (no "using" spec)
1 column: z # implicit x from row, y from index
3 columns: x y z

See also linetypes (p. 64), linewidth (p. 263), and linestyle (p. 263).

Linespoints

α α α

α

α

α

α α α α

α

with linespoints
pointinterval -2

with lp pt "α" pi -1 α

The linespoints style (short form lp) connects adjacent
points with straight line segments and then goes back to
draw a small symbol at each point. Points are drawn with
the default size determined by set pointsize unless a spe-
cific point size is given in the plot command or a variable
point size is provided in an additional column of input
data. Additional input columns may also be used to pro-
vide information such as variable line color. See lines
(p. 113) and points (p. 117).

Two keywords control whether or not every point in the plot is marked with a symbol, pointinterval (short
form pi) and pointnumber (short form pn).

114 gnuplot 6.1

pi N or pi -N tells gnuplot to only place a symbol on every Nth point. A negative value for N will erase the
portion of line segment that passes underneath the symbol. The size of the erased portion is controlled by set
pointintervalbox.

pn N or pn -N tells gnuplot to label only N of the data points, evenly spaced over the data set. As with pi, a
negative value for N will erase the portion of line segment that passes underneath the symbol.

Marks

The 2D plotting style with marks places a mark composed of lines and polygons at each data point. This style
is only relevant for 2D plotting. It is designed for drawing a scatter plot with custom marks (symbols). It can
also be used to compose annotation or non-textual labeling for other plot styles. For a general description of
how marks are defined see marks (p. 70), in particular the examples given there.

Syntax:

plot <data> with marks marktype {<tag>|variable}
{units {ps|xy|xx|yy|gxy|gxx|gyy}}
{noclip}

The plot with marks command requires 2 to 5 columns of basic data. Each mark is positioned in accordance
with its center, xscale, yscale, and rotation angle in degrees. The direction and origin of the rotation angle
obeys the setting by set theta. This sequence of input data is similar to the ellipses plot style (see with ellipses
(p. 99)). Additional input columns can be used to provide variable line colors, fill colors, or marktype (see
rgbcolor variable (p. 67)).

Using specifier:

2 column: x y
3 column: x y scale
4 column: x y xscale yscale
5 column: x y xscale yscale angle

The "marktype" keyword (abbreviated form "mt") is used to specify the tag number of a mark previously
defined by a set mark command. If the keyword "variable" is given instead of a numerical tag, the marktype
at each point is taken from an additional column of input data.

The "units" options specifies what coordinate system is used to interpret [x,y] values stored in the mark defi-
nition by set mark.

ps : both of x and y in units close to pointsize (default)
xy : x in units of the x axis and y in units of the y axis
xx : both of x and y in units of the x axis
yy : both of x and y in units of the y axis
gxy : x and y in % of the horizontal and vertical graph range
gxx : both of x and y in % of the horizontal graph range
gyy : both of x and y in % of the vertical graph range

The "noclip" option permits drawing marks outside of graph area. Otherwise marks that cross the graph
boundary are clipped so that only the part interior to the graph area is drawn. This is useful when the marks
are used for annotation or plot markup rather than representing data point. See marks examples annotation
(p. 74).

gnuplot 6.1 115

Linesmarks

The linesmarks style connects adjacent points with straight line segments and then goes back to draw a mark
composed of lines and polygons at each point. This style is only relevant for 2D plotting. Syntax:

plot <data> with linesmarks marktype {<tag>|variable}
{units {ps|xy|xx|yy|gxy|gxx|gyy}}
{pointnumber N}
{pointinterval M}

Custom point shapes defined as marks
The plot with linesmarks command requires 3 to 5
columns of basic data. Additional input columns can be
used to provide variable line color, fill color, or marktype.
Handling of the marktype, scale, angle, and units options
are exactly the same as for plot with marks.

Using specifier:

2 column: x y
3 column: x y scale
4 column: x y xscale yscale
5 column: x y xscale yscale angle

The spacing of marks along the line can be modified by two additional options. "pointinterval" (short form
"pi") N tells gnuplot to only place a mark on every Nth point. "pointnumber" (short form "pn") N tells
gnuplot to mark only N of the data points, evenly spaced over the data set.

Masking

The plotting style with mask is used to define a masking region that can be applied to pm3d surfaces or to
images specified later in the same plot or splot command. Input data is interpreted as a stream of [x,y] or
[x,y,z] coordinates defining the vertices of one or more polygons. As in plotting style with polygons, polygons
are separated by a blank line. If the mask is part of a 3D (splot) command then a column of z values is required
on input but is currently not used for anything.

If a mask definition is present in the plot command, then any subsequent image or pm3d surface in the same
command can be masked by adding the keywordmask. If no mask has been defined, this keyword is ignored.

This example illustrates using the convex hull circumscribing a set of points to mask the corresponding region
of a pm3d surface.

116 gnuplot 6.1

Cluster of points
 defining the mask region

pm3d surface masked by
convex hull of the cluster

set table $HULL
plot $POINTS using 1:2 convexhull
unset table

set view map
set multiplot layout 1,2
splot $POINTS using 1:2:3 with pm3d, \

$POINTS using 1:2:(0) nogrid with points
splot $HULL using 1:2:(0) with mask, \

$POINTS using 1:2:3 mask with pm3d
unset multiplot

The splot command for the first panel renders the unmasked surface created by dgrid3d from the original points
and then the points themselves, in that order. The splot command for the second panel renders the masked
surface. Note that definition of the mask must come first (plot with mask), followed by the pm3d surface it
applies to (plot style with pm3dmodified by themask keyword). A more complete version of this example is
in the demo collection mask_pm3d.dem

Although it is not shown here, a single mask can include multiple polygonal regions.

Parallelaxes

axis 1 axis 2 axis 3 axis 4

 50

 100

 150

 200

 250

 5

 10

 15

 100

 200

 300

 400

 500

 600

 1
 2
 3
 4
 5
 6
 7
 8

Parallel axis plots can highlight correlation in a multidi-
mensional data set. Individual columns of input data are
each associated with a separately scaled vertical axis. If
all columns are drawn from a single file then each line
on the plot represents values from a single row of data in
that file. It is common to use some discrete categoriza-
tion to assign line colors, allowing visual exploration of
the correlation between this categorization and the axis
dimensions.

Syntax:
set style data parallelaxes
plot $DATA using col1{:varcol1} {at <xpos>} {<line properties}, \

$DATA using col2, ...

The at keyword allows explicit placement of the parallel vertical axes along the x axis as in the example below.
If no explicit x coordinate is provide axis N will be placed at x=N.

array xpos[5] = [1, 5, 6, 7, 11, 12]
plot for [col=1:5] $DATA using col with parallelaxes at xpos[col]

By default gnuplot will automatically determine the range and scale of the individual axes from the input data,
but the usual set axis range commands can be used to customize this. See set paxis (p. 246).

Polar plots

http://www.gnuplot.info/demo/mask_pm3d.html

gnuplot 6.1 117

 1 2 3 4
0

π/2

π

3π/2

bounding radius 2.5
3.+sin(t)*cos(5*t)

Polar plots are generated by changing the current coordi-
nate system to polar before issuing a plot command. The
option set polar tells gnuplot to interpret input 2D co-
ordinates as <angle>,<radius> rather than <x>,<y>.
Many, but not all, of the 2D plotting styles work in polar
mode. The figure shows a combination of plot styles lines
and filledcurves. See set polar (p. 254), set rrange
(p. 256), set size square (p. 257), set theta (p. 269),
set ttics (p. 273).

Polar heatmaps can be generated using plot style with surface together with set polar grid.

 50 100 150 200

set size square
set angle degrees
set rtics
set grid polar
set palette cubehelix negative gamma 0.8
set polar grid gauss kdensity scale 35
set polar grid theta [0:190]
plot DATA with surface, DATA with points pt 7

Points

with points ps variable
The points style displays a small symbol at each point.
The command set pointsize may be used to change the
default size of all points. The point type defaults to that
of the corresponding linetype. See linetypes (p. 64).
Alternatively the plot command can specify a specific
point type or size. The most flexible alternative is to
specify pointtype variable or pointsize variable in the
plot command and provide the corresponding per-datum
point properties in additional columns of the using spec-
ifier. In this case, input data columns are interpreted im-
plicitly in the order x y pointsize pointtype color (see pointtype variable (p. 118) below).

The first 8 point types are shared by all terminals. Individual terminals may provide a much larger number of
distinct point types. Use the test command to show what is provided by the current terminal settings. See also
pointtype symbols (p. 117) below.

Alternatively any single printable character may be given instead of a numerical point type, as in the example
below. You may use any unicode character as the pointtype (assumes utf8 support). See escape sequences
(p. 41). Longer strings may be plotted using plot style labels rather than points.

Examples
plot f(x) with points pt "#"
plot d(x) with points pt "\U+2299"
plot f(x) using 1:2:3 with points pointtype 6 pointsize variable

Pointtype symbols

Symbols used for the first eight numerical point types are consistent across all terminals to the extent possible.
Some terminals provide a larger set of symbols (PostScript provides 75!). In general a terminal providing N

118 gnuplot 6.1

symbols will re-use these cyclically. For example the cairo terminals provide 15 distinct symbols; after that the
symbols repeat in order, so the symbol used for "pointtype 16" is the same as that for "pointtype 1" although
it may use a different color. Use the test command to see the symbol types.

Variable point properties

Plot styles that contain a point symbol optionally accept additional data columns in the using specifier to control
the appearance of that point. This is indicated by modifying the keywords pointtype, pointsize, or linecolor
in the plot command with the additional keyword variable rather than providing a number. Plot style with
labels also accepts a variable text rotation angle. Example:

Input data provides [x,y] in columns 1:2
point size is given in column 5
RGB color is given as hexadecimal value in column 4
all points use pointtype 7

plot DATA using 1:2:5:4 with points lc rgb variable ps variable pt 7

If more than one variable property is specified, columns are interpreted in the order below regardless of the
order of keywords in the plot command.

textrotation : pointsize : pointtype : color

Thus in the example above "lc rgb variable" appears first in the plot command but the color is taken from the
final column (4) given by using. Variable color is always taken from the last additional column. There are
several methods of specifying variable color. See colorspec (p. 65).

Note: for information on user-defined program variables, see variables (p. 58).

Polygons

2D plots:
plot DATA {using 1:2} with polygons

plot with polygons is treated as plot with filledcurves closed except that each polygon’s border is rendered as
a closed curve even if its first and last points are not the same. The border line type is taken from the fill style.
The input data file may contain multiple polygons separated by single blank lines. Each polygon can be assigned
a separate fill color by providing a third using specifier and the keywords fc variable (value is interpreted as a
linetype) or fc rgb variable (value is interpreted as a 24-bit RGB color). Only the color value from the first
vertex of the polygon is used.

3D plots:
splot DATA {using x:y:z} with polygons

{fillstyle <fillstyle spec>}
{fillcolor <colorspec>}

splot with polygons uses pm3d to render individual triangles, quadrangles, and larger polygons in 3D. These
may be facets of a 3D surface or isolated shapes. The code assumes that the vertices lie in a plane. Vertices
defining individual polygons are read from successive records of the input file. A blank line separates one
polygon from the next. For the case of binary input files, see binary blank (p. 151).

Note: Previous gnuplot versions suffered from a limitation that all 3D polygons shared a single set of fill border
proporties taken from set pm3d border. This limitation is no longer present. Polygon fill style, border color,

gnuplot 6.1 119

and border linewidth may now be specified in the splot command, otherwise they are taken from the global
settings of set style fill (not from set pm3d). The fill style, border color, and border linewidth for polygon
objects are specified in the set object command.

Each polygon may be assigned a separate fill color by providing a fourth using specifier and the keywords fc
variable (value is interpreted as a linetype) or fc rgb variable (value is interpreted as a 24-bit RGB color).
Only the color value from the first vertex of the polygon is used.

pm3d sort order and lighting are applied to the faces. It is probably always desirable to use set pm3d
depthorder.

set xyplane at 0
set view equal xyz
unset border
unset tics
set pm3d depth
splot 'icosahedron.dat' with polygons fc background \

fs transparent solid 0.8 border lc "black" lw 2

Rgbalpha

See image (p. 110).

Rgbimage

See image (p. 110).

Sectors

(center_x, center_y)

sector_angle

annular_width

corner
(azimuth, radius)

A single annular sector in plot style "with sectors"
The 2D plotting style with sectors renders one annular
segment ("sector") for each line of input data. The shape
of each sector is described by four required data values.
An additional pair of data values can be included to spec-
ify the origin of the annulus this sector is taken from. A
per-sector colormay be provided in an additional column.

The plot style itself can be used in either cartesian or po-
lar mode (set polar). The units and interpretation for the
azimuth and the sector angle are controlled using set an-
gles (p. 183) and set theta (p. 269).

Columns 1 and 2 specify the azimuth (theta) and radius (r) of one corner of the sector.
Columns 3 and 4 specify the angular and radial extents of the sector ("sector_angle" and "annular_width").
Columns 5 and 6, if present, specify the coordinates of the center of the annulus (default [0,0]). The interpre-
tation is [x,y] in cartesian mode and [theta,r] in polar mode.

Syntax:
plot DATA {using specifier} {units xy | units xx | units yy}

using specifier

120 gnuplot 6.1

4 columns: azimuth radius sector_angle annular_width
5 columns: azimuth radius sector_angle annular_width color
6 columnd: azimuth radius sector_angle annular_width center_x center_y
7 columns: azimuth radius sector_angle annular_width center_x center_y color

Note that if the x and y axis scales are not equal, the envelope of the full annulus in x/y coordinates will appear
as an ellipse rather than a circle. The annulus envelope and thus the apparent sector annular width can be
adjusted to correct for unequal axis scales using the same mechanism as for ellipses. Adding units xx to the
command line causes the sector to be rendered as if the current x axis scale applied equally to both x and y.
Similarly units yy causes the sector to be rendered as if the current y axis scale applied equally to both x and
y. See set isotropic (p. 212), set style ellipse (p. 265).

Wind rose
 (polar coordinate histogram using sectors)

Plotting with sectors can provide polar coordinate equiv-
alents for the cartesian plot styles boxes (see wind rose
figure), boxxyerror and image pixels (see example in
heatmaps (p. 103)). Because sector plots are compati-
ble with cartesian mode plot layout, multiple plots can be
placed at different places on a single graph, which would
not be possible for other polar mode plot styles.

An example of using sectors to create a wind rose in
shown here. Other applications include polar heatmaps,
dial charts, pie/donut charts, and annular error boxes for data points in polar coordinates. Worked examples
for all of these are given in the sectors demo.

Spiderplot

Spider plots are essentially parallel axis plots in which the axes are arranged radially rather than vertically. Such
plots are sometimes called radar charts. In gnuplot this requires working within a coordinate system estab-
lished by the command set spiderplot, analogous to set polar except that the angular coordinate is determined
implicitly by the parallel axis number. The appearance, labelling, and tic placement of the axes is controlled
by set paxis. Further style choices are controlled using set style spiderplot (p. 266), set grid (p. 209), and
the individual components of the plot command.

Because each spider plot corresponds to a row of data rather than a column, it would make no sense to generate
key entry titles in the normal way. Instead, if a plot component contains a title the text is used to label the
corresponding axis. This overrides any previous set paxis n label "Foo". To place a title in the key, you can
either use a separate keyentry command or extract text from a column in the input file with the key(column)
using specifier. See keyentry (p. 215), using key (p. 170).

In this figure a spiderplot with 5 axes is used to compare multiple entities that are each characterized by five
scores. Each line (row) in $DATA generates a new polygon on the plot.

http://www.gnuplot.info/demo/sectors.html

gnuplot 6.1 121

George
Harriet

 20

 40

 60

 80

 100

Score 1

Score 2

Score 3Score 4

Score 5

$DATA << EOD
A B C D E F

George 15 75 20 43 90 50
Harriet 40 40 40 60 30 50
EOD
set datafile columnheader
set spiderplot
set style spiderplot fs transparent solid 0.2 border
set for [p=1:5] paxis p range [0:100]
set for [p=2:5] paxis p tics format ""
set paxis 1 tics font ",9"
set for [p=1:5] paxis p label sprintf("Score %d",p)
set grid spiderplot
plot for [i=2:6] $DATA using i:key(1)

Newspiderplot

Normally the sequential elements of a plot command with spiderplot each correspond to one vertex of a
single polygon. In order to describe multiple polygons in the same plot command, they must be separated by
newspiderplot. Example:

One polygon with 10 vertices
plot for [i=1:5] 'A' using i, for [j=1:5] 'B' using j
Two polygons with 5 vertices
plot for [i=1:5] 'A' using i, newspiderplot, for [j=1:5] 'B' using j

122 gnuplot 6.1

Steps

with fillsteps
with steps

data points

The steps style is only relevant to 2D plotting. It connects
consecutive points with two line segments: the first from
(x1,y1) to (x2,y1) and the second from (x2,y1) to (x2,y2).
The input column requires are the same as for plot styles
lines and points. The difference between fsteps and
steps is that fsteps traces first the change in y and then
the change in x. steps traces first the change in x and then
the change in y. To fill the area between the curve and the
baseline at y=0, use fillsteps. See also steps demo.

1 column: y # implicit x from line number (column 0)
2 columns: x y

Surface

The plot style with surface has two uses.

In 3D plots, with surface always produces a surface. If a 3D data set is recognizable as a mesh (grid) then
by default the program implicitly treats the plot style with lines as requesting a gridded surface, making with
lines a synonym for with surface. However the command set surface explicit suppresses this treatment, in
which case with surface and with lines become distinct styles that may be used in the same plot.

If you have points in 3D that are not recognized as a grid, you may be able to fit a suitable grid first. See set
dgrid3d (p. 200).

In 2D polar mode plots,with surface is used to produce a solid fill gridded represention of the data. Generation
of the surface is controlled using the command set polar grid (p. 254).

Vectors

-3

-2

-1

 1

 2

 3

-3 -2 -1 1 2 3

Vector field F(x,y) = (ky,-kx)The 2D vectors style draws a vector from (x,y) to
(x+xdelta,y+ydelta). The 3D vectors style is similar, but
requires six columns of basic data. In both cases, an addi-
tional input column (5th in 2D, 7th in 3D) may be used to
provide variable (per-datapoint) color information. (see
linecolor (p. 65) and rgbcolor variable (p. 67)). A small
arrowhead is drawn at the end of each vector.

4 columns: x y xdelta ydelta
6 columns: x y z xdelta ydelta zdelta

The keywords "with vectors" may be followed by inline arrow style properties, by reference to a predefined
arrow style, or by a request to read the index of the desired arrow style for each vector from a separate input
column. See the first three examples below.

Examples:

http://www.gnuplot.info/demo/steps.html
http://www.gnuplot.info/demo/steps.html

gnuplot 6.1 123

plot ... using 1:2:3:4 with vectors filled heads
plot ... using 1:2:3:4 with vectors arrowstyle 3
plot ... using 1:2:3:4:5 with vectors arrowstyle variable
splot 'file.dat' using 1:2:3:(1):(1):(1) with vectors filled head lw 2

Notes: You cannot mix the arrowstyle keyword with other line style qualifiers in the plot command. An
additional column of color values is required if the arrow style includes lc variable or lc rgb variable.

splot with vectors is supported only for set mapping cartesian. set clip one and set clip two affect vectors
drawn in 2D. See set clip (p. 190) and arrowstyle (p. 259).

See also the 2D plot style with arrows (p. 90) that is identical to with vectors (p. 122) except that each arrow
is specified using x:y:length:angle.

Xerrorbars

with xerrorbars

The xerrorbars style is only relevant to 2D data plots.
xerrorbars is like points, except that a horizontal error
bar is also drawn. At each point (x,y), a line is drawn from
(xlow,y) to (xhigh,y) or from (x-xdelta,y) to (x+xdelta,y),
depending on how many data columns are provided. The
appearance of the tic mark at the ends of the bar is con-
trolled by set errorbars. The clearance between the
point and the error bars is controlled by set pointinter-
valbox. To have the error bars pass directly through the
point with no interruption, use unset pointintervalbox.
The basic style requires either 3 or 4 columns:

3 columns: x y xdelta
4 columns: x y xlow xhigh

An additional input column (4th or 5th) may be used to provide variable color. This style does not permit
variable point properties.

Xyerrorbars

with xyerrorbars

The xyerrorbars style is only relevant to 2D data plots.
xyerrorbars is like points, except that horizontal and
vertical error bars are also drawn. At each point (x,y),
lines are drawn from (x,y-ydelta) to (x,y+ydelta) and from
(x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh)
and from (xlow,y) to (xhigh,y), depending upon the num-
ber of data columns provided. The appearance of the tic
mark at the ends of the bar is controlled by set error-
bars. The clearance between the point and the error bars
is controlled by set pointintervalbox. To have the error
bars pass directly through the point with no interruption, use unset pointintervalbox. Either 4 or 6 input
columns are required.

124 gnuplot 6.1

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using specifier of the plot command should be used to
set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use

plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

An additional input column (5th or 7th) may be used to provide variable color. This style does not permit
variable point properties.

Xerrorlines

with xerrorlines

The xerrorlines style is only relevant to 2D data plots.
xerrorlines is like linespoints, except that a horizontal
error line is also drawn. At each point (x,y), a line is
drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are
provided. The appearance of the tic mark at the ends of
the bar is controlled by set errorbars. The basic style
requires either 3 or 4 columns:

3 columns: x y xdelta
4 columns: x y xlow xhigh

An additional input column (4th or 5th) may be used to provide variable color. This style does not permit
variable point properties.

Xyerrorlines

with xyerrorlines

The xyerrorlines style is only relevant to 2D data plots.
xyerrorlines is like linespoints, except that horizontal
and vertical error bars are also drawn. At each point (x,y),
lines are drawn from (x,y-ydelta) to (x,y+ydelta) and from
(x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh)
and from (xlow,y) to (xhigh,y), depending upon the num-
ber of data columns provided. The appearance of the tic
mark at the ends of the bar is controlled by set errorbars.
Either 4 or 6 input columns are required.

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using specifier of the plot command should be used to
set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use

plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

An additional input column (5th or 7th) may be used to provide variable color. This style does not permit
variable point properties.

gnuplot 6.1 125

Yerrorbars

with yerrorbars

The yerrorbars (or errorbars) style is only relevant
to 2D data plots. yerrorbars is like points, except
that a vertical error bar is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta) or
from (x,ylow) to (x,yhigh), depending on how many data
columns are provided. The appearance of the tic mark at
the ends of the bar is controlled by set errorbars. The
clearance between the point and the error bars is con-
trolled by set pointintervalbox. To have the error bars
pass directly through the point with no interruption, use
unset pointintervalbox.

2 columns: [implicit x] y ydelta
3 columns: x y ydelta
4 columns: x y ylow yhigh

Additional input columns may be used to provide information such as variable point size, point type, or color.

See also errorbar demo.

Yerrorlines

with yerrorlines

The yerrorlines (or errorlines) style is only relevant to
2D data plots. yerrorlines is like linespoints, except
that a vertical error line is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta) or
from (x,ylow) to (x,yhigh), depending on how many data
columns are provided. The appearance of the tic mark at
the ends of the bar is controlled by set errorbars. Either
3 or 4 input columns are required.

3 columns: x y ydelta
4 columns: x y ylow yhigh

Additional input columns may be used to provide information such as variable point size, point type, or color.

See also errorbar demo.

http://www.gnuplot.info/demo/mgr.html
http://www.gnuplot.info/demo/mgr.html

126 gnuplot 6.1

3D plots

3D plots are generated using the command splot rather than plot. Many of the 2D plot styles (points, images,
impulse, labels, vectors) can also be used in 3D by providing an extra column of data containing z coordinate.
Some plot types (pm3d coloring, surfaces, contours) must be generated using the splot command even if only
a 2D projection is wanted.

Surface plots

3D surface with projected contoursThe styles splot with lines and splot with surface both
generate a surface made from a grid of lines. Solid sur-
faces can be generated using the style splot with pm3d.
Usually the surface is displayed at some convenient view-
ing angle, such that it clearly represents a 3D surface. See
set view (p. 274). In this case the X, Y, and Z axes are
all visible in the plot. The illusion of 3D is enhanced by
choosing hidden line removal. See hidden3d (p. 209).
The splot command can also calculate and draw contour
lines corresponding to constant Z values. These contour
lines may be drawn onto the surface itself, or projected onto the XY plane. See set contour (p. 195).

2D projection (set view map)

0.80.8

0.80.8

0.60.6

0.60.6

0.40.4

0.40.4

0.20.2

0.20.2

0.20.2

0.20.2

00

00

00

00

-0.2-0.2

-0.2-0.2

-0.2-0.2

-0.2-0.2

-0.4-0.4 -0.4-0.4

-0.4-0.4

-0.6-0.6

-0.6-0.6

-0.6-0.6

-0.8-0.8

-0.8-0.8

X axis

Y
 a

xi
s

projected contours using 'set view map'An important special case of the splot command is to
map the Z coordinate onto a 2D surface by projecting the
plot along the Z axis onto the xy plane. See set viewmap
(p. 274). This plot mode is useful for contour plots and
heat maps. This figure shows contours plotted once with
plot style lines and once with style labels.

PM3D plots

 0
 2

 4 -2
 0

 2-10

-5

 0

 5

 10

splot with pm3d, solid fillcolor3D surfaces can also be drawn using solid pm3d quad-
rangles rather than lines. In this case there is no hidden
surface removal, but if the component facets are drawn
back-to-front then a similar effect is achieved. See set
pm3d depthorder (p. 251). While pm3d surfaces are
by default colored using a smooth color palette (see set
palette (p. 240)), it is also possible to specify a solid color
surface or to specify distinct solid colors for the top and
bottom surfaces as in the figure shown here. See pm3d
fillcolor (p. 252). Unlike the line-trimming in hidden3d
mode, pm3d surfaces can be smoothly clipped to the current zrange. See set pm3d clipping (p. 251).

gnuplot 6.1 127

Fence plots

A B C D E -0.4
 -0.2

 0.0
 0.2

 0.4

Y value

Z
 v

al
u
e

fence plot constructed with zerrorfill
Fence plots combine several 2D plots by aligning their Y
coordinates and separating them from each other by a dis-
placement along X. Filling the area between a base value
and each plot’s series of Z values enhances the visual im-
pact of the alignment on Y and comparison on Z. There
are several ways such plots can be created in gnuplot. The
simplest is to use the 5 column variant of the zerrorfill
style. Suppose there are separate curves z = Fi(y) indexed
by i. A fence plot is generated by splot with zerrorfill
using input columns

i y z_base z_base Fi(y)

Isosurface

isosurface generated from voxel dataThis 3D plot style requires a populated voxel grid (see
set vgrid (p. 274), vfill (p. 305)). Linear interpolation
of voxel grid values is used to estimate fractional grid co-
ordinates corresponding to the requested isolevel. These
points are then used to generate a tessellated surface. The
facets making up the surface are rendered as pm3d poly-
gons, so the surface coloring, transparency, and border
properties are controlled by set pm3d. In general the
surface is easier to interpret visually if facets are given
a thin border that is darker than the fill color. By default
the tessellation uses a mixture of quadrangles and triangles. To use triangle only, see set isosurface (p. 212).
Example:

set style fill solid 0.3
set pm3d depthorder border lc "blue" lw 0.2
splot $helix with isosurface level 10 fc "cyan"

Zerrorfill

Syntax:
splot DATA using 1:2:3:4[:5] with zerrorfill {fc|fillcolor <colorspec>}

{lt|linetype <n>} {<line properties>}

The zerrorfill plot style is similar to one variant of the 2D plot style filledcurves. It fills the area between two
functions or data lines that are sampled at the same x and y points. It requires 4 or 5 input columns:

4 columns: x y z zdelta
5 columns: x y z zlow zhigh

128 gnuplot 6.1

 0 100 200 300 400 500 600 1
 2

 3
 4

 5
 1

 10

 100

 1000 k = 5
k = 4
k = 3
k = 2
k = 1

k = 5
k = 4
k = 3
k = 2
k = 1

The area between zlow and zhigh is filled and then a line
is drawn through the z values. By default both the line and
the fill area use the same color, but you can change this
in the splot command. The fill area properties are also
affected by the global fill style; see set style fill (p. 261).

If there are multiple curves in the splot command each
new curve may occlude all previous curves. To get proper
depth sorting so that curves can only be occluded by
curves closer to the viewer, it is best to order the curves
from back to front. Alternatively you can use set pm3d depthorder base to sort them automatically, but unfor-
tunately this causes all the filled areas to be drawn after all of the corresponding lines of z values. In order to see
both the lines and the depth-sorted fill areas you probably will need to make the fill areas partially transparent.

The fill area in the first two examples below is the same.
splot 'data' using 1:2:3:4 with zerrorfill fillcolor "grey" lt black
splot 'data' using 1:2:3:($3-$4):($3+$4) with zerrorfill
splot '+' using 1:(const):(func1($1)):(func2($1)) with zerrorfill
splot for [k=1:5] datafile[k] with zerrorfill lt black fc lt (k+1)

This plot style can also be used to create fence plots. See fenceplots (p. 127). See alsowaterfallplots (p. 101).

Animation

Any of gnuplot’s interactive terminals (qt win wxt x11 aqua) can be used to display an animation by plotting
successive frames from the command line or from a script.

Several non-mousing terminals also support some form of animation. See term sixelgd (p. 351), term kitty-
cairo (p. 332).

Two terminals can save an animation to a file for later playback locally or by embedding it a web page. See
term gif animate (p. 329), term webp (p. 357).

Example:
unset border; unset tics; unset key; set view equal xyz
set pm3d border linecolor "black"

set term webp animate delay 50
set output 'spinning_d20.webp'
do for [ang=1:360:2] {

set view 60, ang
splot 'icosahedron.dat' with polygons fc "gold"

}
unset output

gnuplot 6.1 129

Part III

Commands
This section lists the commands acceptable to gnuplot in alphabetical order. Printed versions of this document
contain all commands; the text available interactively may not be complete. Indeed, on some systems there may
be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their options are permissible, i.e.,
"p f(x) w li" instead of "plot f(x) with lines".

In the syntax descriptions, braces ({}) denote optional arguments and a vertical bar (|) separates mutually
exclusive choices.

Break

The break command is only meaningful inside the bracketed iteration clause of a do or while statement. It
causes the remaining statements inside the bracketed clause to be skipped and iteration is terminated. Execution
resumes at the statement following the closing bracket. See also continue (p. 131).

Cd

The cd command changes the working directory.

Syntax:
cd '<directory-name>'

The directory name must be enclosed in quotes.

Examples:
cd 'subdir'
cd ".."

It is recommended that Windows users use single-quotes, because backslash [\] has special significance inside
double-quotes and has to be escaped. For example,

cd "c:\newdata"

fails, but
cd 'c:\newdata'
cd "c:\\newdata"

work as expected.

Call

The call command is identical to the load command with one exception: the name of the file being loaded may
be followed by up to nine parameters.

130 gnuplot 6.1

call "inputfile" <param-1> <param-2> <param-3> ... <param-9>

Gnuplot now provides a set of string variables ARG0, ARG1, ..., ARG9 and an integer variable ARGC. When
a call command is executed ARG0 is set to the name of the input file, ARGC is set to the number of parameters
present, and ARG1 to ARG9 are loaded from the parameters that follow it on the command line. Any existing
contents of the ARG variables are saved and restored across a call command.

Because the parameters ARG1 ... ARG9 are stored in ordinary string variables they may be dereferenced by
macro expansion. However in many cases it is more natural to use them as you would any other variable.

In parallel with the string representation of parameters ARG1 ... ARG9, the parameters themselves are stored
in an array ARGV[9]. See ARGV (p. 130).

DEPRECATED: Versions prior to 5.0 performed macro-like substitution of the special tokens $0, $1, ... $9
with the literal contents of <param-1> ... That older mechanism is no longer supported.

Function blocks (new in this version) provide a more flexible alternative to call. See function blocks (p. 142).

ARGV[]

When a gnuplot script is entered via the call command any parameters passed by the caller are available via
two mechanisms. Each parameter is stored as a string in variables ARG1, ARG2, ... ARG9. Each parameter
is also stored as one element of the array ARGV[9]. Numerical values are stored as complex variables. All
other values are stored as strings. ARGC holds the number of parameters. Thus after a call

call 'routine_1.gp' 1 pi "title"

The three arguments are available inside routine_1.gp as follows
ARGC = 3
ARG1 = "1" ARGV[1] = 1.0
ARG2 = "3.14159" ARGV[2] = 3.14159265358979...
ARG3 = "title" ARGV[3] = "title"

In this exampleARGV[1] andARGV[2] have the full precision of a floating point variable. ARG2 lost precision
in being stored as a string using format "%g".

ARGC and a corresponding array ARGV[ARGC] are also available to code inside a function block call.
However invocation of a function block does not create string variables ARG1,... .

Example
Call site

MYFILE = "script1.gp"
FUNC = "sin(x)"
call MYFILE FUNC 1.23 "This is a plot title"

Upon entry to the called script
ARG0 holds "script1.gp"
ARG1 holds the string "sin(x)"
ARG2 holds the string "1.23"
ARG3 holds the string "This is a plot title"
ARGC is 3

The script itself can now execute
plot @ARG1 with lines title ARG3
print ARG2 * 4.56, @ARG2 * 4.56
print "This plot produced by script ", ARG0

gnuplot 6.1 131

Notice that because ARG1 is a string it must be dereferenced as a macro, but ARG2 may be dereferenced
either as a macro (yielding a numerical constant) or a variable (yielding that same numerical value after auto-
promotion of the string "1.23" to a real).

The same result could be obtained directly from a shell script by invoking gnuplot with the -c command line
option:

gnuplot -persist -c "script1.gp" "sin(x)" 1.23 "This is a plot title"

Clear

The clear command erases the current screen or output device as specified by set terminal and set output.
This usually generates a formfeed on hardcopy devices.

For some terminals clear erases only the portion of the plotting surface defined by set size, so for these it can
be used in conjunction with set multiplot to create an inset.

Example:
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
unset multiplot

Please see set multiplot (p. 229), set size (p. 257), and set origin (p. 238) for details.

Continue

The continue command is only meaningful inside the bracketed iteration clause of a do or while statement. It
causes the remaining statements inside the bracketed clause to be skipped. Execution resumes at the start of
the next iteration (if any remain in the loop condition). See also break (p. 129).

Do

Syntax:
do for <iteration-spec> {

<commands>
<commands>

}

Execute a sequence of commands multiple times. The commands must be enclosed in curly brackets, and
the opening "{" must be on the same line as the do keyword. This command cannot be used with old-style
(un-bracketed) if/else statements. See if (p. 144). For examples of iteration specifiers, see iteration (p. 63).
Example:

set multiplot layout 2,2
do for [name in "A B C D"] {

filename = name . ".dat"

132 gnuplot 6.1

set title sprintf("Condition %s",name)
plot filename title name

}
unset multiplot

See also while (p. 306), continue (p. 131), break (p. 129).

Evaluate

The evaluate command executes gnuplot commands contained in a string or in a function block. Newline
characters are not allowed within the string.

evaluate "commands in a string constant"
evaluate string_valued_function(... arguments ...)
evaluate $functionblock(... arguments ...)

This is especially useful for a repetition of similar commands.

Example:
set_label(x, y, text) \
= sprintf("set label '%s' at %f, %f point pt 5", text, x, y)

eval set_label(1., 1., 'one/one')
eval set_label(2., 1., 'two/one')
eval set_label(1., 2., 'one/two')

Please see function blocks (p. 142) and substitution macros (p. 84) for other mechanisms that construct or
execute strings containing gnuplot commands.

Exit
exit
exit message "error message text"
exit status <integer error code>

The commands exit and quit, as well as the END-OF-FILE character (usually Ctrl-D) terminate input from
the current input stream: terminal session, pipe, or file input (pipe). If input streams are nested (inherited load
scripts), then reading will continue in the parent stream. When the top level stream is closed, the program itself
will exit.

The command exit gnuplot will immediately and unconditionally cause gnuplot to exit even if the input stream
is multiply nested. In this case any open output files may not be completed cleanly. Example of use:

bind "ctrl-x" "unset output; exit gnuplot"

The command exit error "error message" simulates a program error. In interactive mode it prints the error
message and returns to the command line, breaking out of all nested loops or calls. In non-interactive mode
the program will exit.

When gnuplot exits to the controlling shell, the return value is not usually informative. This variant of the
command allows you to return a specific value.

exit status <value>

See help for batch/interactive (p. 36) for more details.

gnuplot 6.1 133

Fit

The fit command fits a user-supplied real-valued expression to a set of data points, using the nonlinear least-
squares Marquardt-Levenberg algorithm. There can be up to 12 independent variables, there is always 1 de-
pendent variable, and any number of parameters can be fitted. Optionally, error estimates can be input for
weighting the data points.

The basic use of fit is best explained by a simple example where a set of measured x and y values read from a
file are used to be modeled by a function y = f(x).

f(x) = a + b*x + c*x**2
fit f(x) 'measured.dat' using 1:2 via a,b,c
plot 'measured.dat' u 1:2, f(x)

Syntax:
fit {<ranges>} <expression>

'<datafile>' {datafile-modifiers}
{{unitweights} | {y|xy|z}error | errors <var1>{,<var2>,...}}
via '<parameter file>' | <var1>{,<var2>,...}

Ranges may be specified to filter the data used in fitting. Out-of-range data points are ignored. The syntax is
[{dummy_variable=}{<min>}{:<max>}],

analogous to plot; see plot ranges (p. 171).

<expression> can be any valid gnuplot expression, although the most common is a previously user-defined
function of the form f(x) or f(x,y). It must be real-valued. The names of the independent variables are set
by the set dummy command, or in the <ranges> part of the command (see below); by default, the first two
are called x and y. Furthermore, the expression should depend on one or more variables whose value is to be
determined by the fitting procedure.

<datafile> is treated as in the plot command. All the plot datafilemodifiers (using, every,...) except smooth
are applicable to fit. See plot datafile (p. 154).

The datafile contents can be interpreted flexibly by providing a using qualifier as with plot commands. For
example to generate the independent variable x as the sum of columns 2 and 3, while taking z from column 6
and requesting equal weights:

fit ... using ($2+$3):6

In the absence of a using specification, the fit implicitly assumes there is only a single independent variable. If
the file itself, or the using specification, contains only a single column of data, the line number is taken as the
independent variable. If a using specification is given, there can be up to 12 independent variables (and more
if specially configured at compile time).

The unitweights option, which is the default, causes all data points to be weighted equally. This can be changed
by using the errors keyword to read error estimates of one or more of the variables from the data file. These
error estimates are interpreted as the standard deviation s of the corresponding variable value and used to
compute a weight for the datum as 1/s**2.

In case of error estimates of the independent variables, these weights are further multiplied by fitting function
derivatives according to the "effective variance method" (Jay Orear, Am. J. Phys., Vol. 50, 1982).

The errors keyword is to be followed by a comma-separated list of one or more variable names for which
errors are to be input; the dependent variable z must always be among them, while independent variables are
optional. For each variable in this list, an additional column will be read from the file, containing that variable’s

134 gnuplot 6.1

error estimate. Again, flexible interpretation is possible by providing the using qualifier. Note that the number
of independent variables is thus implicitly given by the total number of columns in the using qualifier, minus
1 (for the dependent variable), minus the number of variables in the errors qualifier.

As an example, if one has 2 independent variables, and errors for the first independent variable and the depen-
dent variable, one uses the errors x,z qualifier, and a using qualifier with 5 columns, which are interpreted as
x:y:z:sx:sz (where x and y are the independent variables, z the dependent variable, and sx and sz the standard
deviations of x and z).

A few shorthands for the errors qualifier are available: yerrors (for fits with 1 column of independent variable),
and zerrors (for the general case) are all equivalent to errors z, indicating that there is a single extra column
with errors of the dependent variable.

xyerrors, for the case of 1 independent variable, indicates that there are two extra columns, with errors of both
the independent and the dependent variable. In this case the errors on x and y are treated by Orear’s effective
variance method.

Note that yerror and xyerror are similar in both form and interpretation to the yerrorlines and xyerrorlines
2D plot styles.

With the command set fit v4 the fit command syntax is compatible with gnuplot version 4. In this case there
must be two more using qualifiers (z and s) than there are independent variables, unless there is only one
variable. gnuplot then uses the following formats, depending on the number of columns given in the using
specification:

z # 1 independent variable (line number)
x:z # 1 independent variable (1st column)
x:z:s # 1 independent variable (3 columns total)
x:y:z:s # 2 independent variables (4 columns total)
x1:x2:x3:z:s # 3 independent variables (5 columns total)
x1:x2:x3:...:xN:z:s # N independent variables (N+2 columns total)

Please beware that this means that you have to supply z-errors s in a fit with two or more independent variables.
If you want unit weights you need to supply them explicitly by using e.g. then format x:y:z:(1).

The dummy variable names may be changed when specifying a range as noted above. The first range corre-
sponds to the first using spec, and so on. A range may also be given for z (the dependent variable), in which
case data points for which f(x,...) is out of the z range will not contribute to the residual being minimized.

Multiple datasets may be simultaneously fit with functions of one independent variable by making y a ’pseudo-
variable’, e.g., the dataline number, and fitting as two independent variables. See fit multi-branch (p. 139).

The via qualifier specifies which parameters are to be optimized, either directly, or by referencing a parameter
file.

Examples:
f(x) = a*x**2 + b*x + c
g(x,y) = a*x**2 + b*y**2 + c*x*y
set fit limit 1e-6
fit f(x) 'measured.dat' via 'start.par'
fit f(x) 'measured.dat' using 3:($7-5) via 'start.par'
fit f(x) './data/trash.dat' using 1:2:3 yerror via a, b, c
fit g(x,y) 'surface.dat' using 1:2:3 via a, b, c
fit a0 + a1*x/(1 + a2*x/(1 + a3*x)) 'measured.dat' via a0,a1,a2,a3
fit a*x + b*y 'surface.dat' using 1:2:3 via a,b
fit [*:*][yaks=*:*] a*x+b*yaks 'surface.dat' u 1:2:3 via a,b

fit [][][t=*:*] a*x + b*y + c*t 'foo.dat' using 1:2:3:4 via a,b,c

gnuplot 6.1 135

set dummy x1, x2, x3, x4, x5
h(x1,x2,x3,x4,s5) = a*x1 + b*x2 + c*x3 + d*x4 + e*x5
fit h(x1,x2,x3,x4,x5) 'foo.dat' using 1:2:3:4:5:6 via a,b,c,d,e

After each iteration step, detailed information about the current state of the fit is written to the display. The
same information about the initial and final states is written to a log file, "fit.log". This file is always appended
to, so as to not lose any previous fit history; it should be deleted or renamed as desired. By using the command
set fit logfile, the name of the log file can be changed.

If activated by using set fit errorvariables, the error for each fitted parameter will be stored in a variable named
like the parameter, but with "_err" appended. Thus the errors can be used as input for further computations.

If set fit prescale is activated, fit parameters are prescaled by their initial values. This helps the Marquardt-
Levenberg routine converge more quickly and reliably in cases where parameters differ in size by several orders
of magnitude.

The fit may be interrupted by pressing Ctrl-C (Ctrl-Break in wgnuplot). After the current iteration completes,
you have the option to (1) stop the fit and accept the current parameter values, (2) continue the fit, (3) execute
a gnuplot command as specified by set fit script or the environment variable FIT_SCRIPT. The default is
replot, so if you had previously plotted both the data and the fitting function in one graph, you can display the
current state of the fit.

Once fit has finished, the save fit command may be used to store final values in a file for subsequent use as a
parameter file. See save fit (p. 181) for details.

Adjustable parameters

There are two ways that via can specify the parameters to be adjusted, either directly on the command line or
indirectly, by referencing a parameter file. The two use different means to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable names after the via keyword.
Any variable that is not already defined is created with an initial value of 1.0. However, the fit is more likely to
converge rapidly if the variables have been previously declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are specified, one per line, in
the form

varname = value

Comments, marked by ’#’, and blank lines are permissible. The special form
varname = value # FIXED

means that the variable is treated as a ’fixed parameter’, initialized by the parameter file, but not adjusted by fit.
For clarity, it may be useful to designate variables as fixed parameters so that their values are reported by fit.
The keyword # FIXED has to appear in exactly this form.

Short introduction

fit is used to find a set of parameters that ’best’ fits your data to your user-defined function. The fit is judged
on the basis of the sum of the squared differences or ’residuals’ (SSR) between the input data points and the
function values, evaluated at the same places. This quantity is often called ’chisquare’ (i.e., the Greek letter chi,
to the power of 2). The algorithm attempts to minimize SSR, or more precisely the weighted sum of squared

136 gnuplot 6.1

residuals (WSSR), for which the residuals are weighted by the input data errors before being squared; see fit
error_estimates (p. 136) for details.

That’s why it is called ’least-squares fitting’. Let’s look at an example to see what is meant by ’non-linear’, but
first we had better go over some terms. Here it is convenient to use z as the dependent variable for user-defined
functions of either one independent variable, z=f(x), or two independent variables, z=f(x,y). A parameter is a
user-defined variable that fit will adjust, i.e., an unknown quantity in the function declaration. Linearity/non-
linearity refers to the relationship of the dependent variable, z, to the parameters which fit is adjusting, not of
z to the independent variables, x and/or y. (To be technical, the second {and higher} derivatives of the fitting
function with respect to the parameters are zero for a linear least-squares problem).

For linear least-squares the user-defined function will be a sum of simple functions, not involving any parame-
ters, each multiplied by one parameter. Nonlinear least-squares handles more complicated functions in which
parameters can be used in a large number of ways. An example that illustrates the difference between linear
and nonlinear least-squares is the Fourier series. One member may be written as

z=a*sin(c*x) + b*cos(c*x).

If a and b are the unknown parameters and c is constant, then estimating values of the parameters is a linear
least-squares problem. However, if c is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one direct
step. However the linear special case is also solved along with more general nonlinear problems by the iterative
procedure that gnuplot uses. fit attempts to find theminimumby doing a search. Each step (iteration) calculates
WSSR with a new set of parameter values. The Marquardt-Levenberg algorithm selects the parameter values
for the next iteration. The process continues until a preset criterion is met, either (1) the fit has "converged"
(the relative change in WSSR is less than a certain limit, see set fit limit (p. 203)), or (2) it reaches a preset
iteration count limit (see set fit maxiter (p. 203)). The fit may also be interrupted and subsequently halted from
the keyboard (see fit (p. 133)). The user variable FIT_CONVERGED contains 1 if the previous fit command
terminated due to convergence; it contains 0 if the previous fit terminated for any other reason. FIT_NITER
contains the number of iterations that were done during the last fit.

Often the function to be fitted will be based on a model (or theory) that attempts to describe or predict the
behaviour of the data. Then fit can be used to find values for the free parameters of the model, to determine
how well the data fits the model, and to estimate an error range for each parameter. See fit error_estimates
(p. 136).

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience as
to which are likely to describe the trend of the data with the desired resolution and a minimum number of
parameters*functions.) The fit solution then provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the smooth option to plot may be
what you’ve been looking for rather than fit.

Error estimates

In fit, the term "error" is used in two different contexts, data error estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of each data point when determining the weighted
sum of squared residuals, WSSR or chisquare. They can affect the parameter estimates, since they determine
how much influence the deviation of each data point from the fitted function has on the final values. Some of
the fit output information, including the parameter error estimates, is more meaningful if accurate data error
estimates have been provided.

gnuplot 6.1 137

The statistical overview describes some of the fit output and gives some background for the ’practical guide-
lines’.

Statistical overview

The theory of non-linear least-squares is generally described in terms of a normal distribution of errors, that
is, the input data is assumed to be a sample from a population having a given mean and a Gaussian (normal)
distribution about the mean with a given standard deviation. For a sample of sufficiently large size, and knowing
the population standard deviation, one can use the statistics of the chisquare distribution to describe a"goodness
of fit" by looking at the variable often called "chisquare". Here, it is sufficient to say that a reduced chisquare
(chisquare/degrees of freedom, where degrees of freedom is the number of datapoints less the number of
parameters being fitted) of 1.0 is an indication that the weighted sum of squared deviations between the fitted
function and the data points is the same as that expected for a random sample from a population characterized
by the function with the current value of the parameters and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics where variance = counts, then
each point should be individually weighted when comparing the observed sum of deviations and the expected
sum of deviations.

At the conclusion fit reports ’stdfit’, the standard deviation of the fit, which is the rms of the residuals, and the
variance of the residuals, also called ’reduced chisquare’ when the data points are weighted. The number of
degrees of freedom (the number of data points minus the number of fitted parameters) is used in these estimates
because the parameters used in calculating the residuals of the datapoints were obtained from the same data. If
the data points have weights, gnuplot calculates the so-called p-value, i.e. oneminus the cumulative distribution
function of the chisquare-distribution for the number of degrees of freedom and the resulting chisquare, see fit
practical_guidelines (p. 138). These values are exported to the variables

FIT_NDF = Number of degrees of freedom
FIT_WSSR = Weighted sum-of-squares residual
FIT_STDFIT = sqrt(WSSR/NDF)
FIT_P = p-value

To estimate confidence levels for the parameters, one can use the minimum chisquare obtained from the fit
and chisquare statistics to determine the value of chisquare corresponding to the desired confidence level, but
considerably more calculation is required to determine the combinations of parameters which produce such
values.

Rather than determine confidence intervals, fit reports parameter error estimates which are readily obtained
from the variance-covariance matrix after the final iteration. By convention, these estimates are called "stan-
dard errors" or "asymptotic standard errors", since they are calculated in the same way as the standard errors
(standard deviation of each parameter) of a linear least-squares problem, even though the statistical condi-
tions for designating the quantity calculated to be a standard deviation are not generally valid for a nonlinear
least-squares problem. The asymptotic standard errors are generally over-optimistic and should not be used for
determining confidence levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix indicating correlation of parameters in the region of the
solution; The main diagonal elements, autocorrelation, are always 1; if all parameters were independent, the
off-diagonal elements would be nearly 0. Two variables which completely compensate each other would have
an off-diagonal element of unit magnitude, with a sign depending on whether the relation is proportional or
inversely proportional. The smaller the magnitudes of the off-diagonal elements, the closer the estimates of the
standard deviation of each parameter would be to the asymptotic standard error.

138 gnuplot 6.1

Practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use of additional knowledge
about your measurements, e.g., take into account that some points may be more reliable than others. That may
affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional fit output after the last iteration. Even if
you weight each point equally, estimating an average standard deviation rather than using a weight of 1 makes
WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress of the fit. (An ’*’ indicates
that it did not find a smallerWSSR and is trying again.) The ’sum of squares of residuals’, also called ’chisquare’,
is the WSSR between the data and your fitted function; fit has minimized that. At this stage, with weighted
data, chisquare is expected to approach the number of degrees of freedom (data points minus parameters). The
WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit, the standard deviation of the fit,
sqrt(WSSR/ndf). Both of these are reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the fitted function, in user
units.

If you supplied valid data errors, the number of data points is large enough, and the model is correct, the
reduced chisquare should be about unity. (For details, look up the ’chi-squared distribution’ in your favorite
statistics reference.) If so, there are additional tests, beyond the scope of this overview, for determining how
well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error estimates, data errors not normally
distributed, systematic measurement errors, ’outliers’, or an incorrect model function. A plot of the residuals,
e.g., plot ’datafile’ using 1:($2-f($1)), may help to show any systematic trends. Plotting both the data points
and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that expected for a random sample
from the function with normally distributed errors. The data error estimates may be too large, the statistical
assumptions may not be justified, or the model function may be too general, fitting fluctuations in a particular
sample in addition to the underlying trends. In the latter case, a simpler function may be more appropriate.

The p-value of the fit is one minus the cumulative distribution function of the chisquare-distribution for the
number of degrees of freedom and the resulting chisquare. This can serve as a measure of the goodness-of-
fit. The range of the p-value is between zero and one. A very small or large p-value indicates that the model
does not describe the data and its errors well. As described above, this might indicate a problem with the
data, its errors or the model, or a combination thereof. A small p-value might indicate that the errors have
been underestimated and the errors of the final parameters should thus be scaled. See also set fit errorscaling
(p. 203).

You’ll have to get used to both fit and the kind of problems you apply it to before you can relate the standard
errors to somemore practical estimates of parameter uncertainties or evaluate the significance of the correlation
matrix.

Note that fit, in common with most nonlinear least-squares implementations, minimizes the weighted sum of
squared distances (y-f(x))**2. It does not provide any means to account for "errors" in the values of x, only
in y. Also, any "outliers" (data points outside the normal distribution of the model) will have an exaggerated
effect on the solution.

gnuplot 6.1 139

Control

There are two environment variables that can be defined to affect fit. The environment variables must be defined
before gnuplot is executed; how to do so depends on your operating system.

FIT_LOG

changes the name (and/or path) of the file to which the fit log will be written. The default is to write "fit.log"
in the current working directory. This can be overwritten at run time using the command set fit logfile.

FIT_SCRIPT

specifies a command that may be executed after an user interrupt. The default is replot, but a plot or load
command may be useful to display a plot customized to highlight the progress of the fit. This can be changed
at run time using set fit script.

For many other run time adjustments to way fit works, see set fit (p. 203).

Error recovery

Starting with gnuplot version 6, the fit command always returns to the next command input line regardless of
the success or failure of fitting. This allows scripted recovery from fit errors. The variable FIT_ERROR is set
to 0 on success, non-zero on error. This example plots however many of five data sets can be successfully fit.
Failure for data set 2 would not prevent fitting data sets 3 through 5.

do for [i=1:5] {
DATA = sprintf("Data_%05d.dat", i)
fit f(x) DATA via a,b,c
if (FIT_ERROR || !FIT_CONVERGED) {

print "Fit failed for ", DATA
continue

}
set output sprintf("dataset_%05.png", i)
plot DATA, f(x)
unset output

}

Multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one independent variable
having common parameters by minimizing the total WSSR. The function and parameters (branch) for each
data set are selected by using a ’pseudo-variable’, e.g., either the dataline number (a ’column’ index of -1) or
the datafile index (-2), as the second independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data set but having a
common decay time, estimate the values of the parameters. If the datafile has the format x:z:s, then

f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau)
fit f(x,y) 'datafile' using 1:-2:2:3 via a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predominate if there is a
difference in the scale of the dependent variable. Fitting each branch separately, using the multi-branch solution
as initial values, may give an indication as to the relative effect of each branch on the joint solution.

140 gnuplot 6.1

Starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the smallest sum of
squared residuals, SSR), and can get stuck at a local minimum. The routine has no way to determine that; it is
up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and changing slowly as the
parameters are varied, or it may reach a numerically unstable region (e.g., too large a number causing a floating
point overflow) which results in an "undefined value" message or gnuplot halting.

To improve the chances of finding the global optimum, you should set the starting values at least roughly in
the vicinity of the solution, e.g., within an order of magnitude, if possible. The closer your starting values are
to the solution, the less chance of stopping at a false minimum. One way to find starting values is to plot data
and the fitting function on the same graph and change parameter values and replot until reasonable similarity
is reached. The same plot is also useful to check whether the fit found a false minimum.

Of course finding a nice-looking fit does not prove there is no "better" fit (in either a statistical sense, charac-
terized by an improved goodness-of-fit criterion, or a physical sense, with a solution more consistent with the
model.) Depending on the problem, it may be desirable to fit with various sets of starting values, covering a
reasonable range for each parameter.

Time data

In fitting time data it is important to remember that gnuplot represents time as seconds since 1 January 1970.
For example if you wanted to fit a quadratic model for the time dependence of something measured over the
course of one day in 2023, you might expect that it could be done using

T(x) = a + b*x + c*x*x
set xdata time
fit T(x) 'hits.dat' using 1:3 via a,b,c

This will probably fail, because internally the x values corresponding to that one day will have a range something
like [1.67746e+09 : 1.67754e+09]. The fractional change in x across the measured data will be only about
1.e-05 and to guarantee convergence you would probably need many decimal places of accuracy in the initial
parameter estimates.

One solution is to recast the problem as change in time since the start of measurement.
set xdata time # data format "27-02-2023 12:00:00 measurement"
timefmt = "%d-%m-%Y %H:%M:%S"
set timefmt timefmt
t0 = strptime(timefmt, "27-02-2023 00:00:00")
fit T(x) 'temperature.dat' using ($1-t0):3 via a,b,c

This shifts the range of the data to [0 : 86400], which is more tractable. Another possibility in this case is to
ignore the date in column 1 and use relative time formats (tH/tM/tS) applied to column 2.

set timefmt "%tH:%tM:%tS"
fit T(x) 'temperature.dat' using 2:3 via a,b,c

Tips

Here are some tips to keep in mind to get the most out of fit. They’re not very organized, so you’ll have to read
them several times until their essence has sunk in.

gnuplot 6.1 141

The two forms of the via argument to fit serve two largely distinct purposes. The via "file" form is best used
for (possibly unattended) batch operation, where you supply the starting parameter values in a file.

The via var1, var2, ... form is best used interactively, where the command history mechanism may be used to
edit the list of parameters to be fitted or to supply new startup values for the next try. This is particularly useful
for hard problems, where a direct fit to all parameters at once won’t work without good starting values. To find
such, you can iterate several times, fitting only some of the parameters, until the values are close enough to the
goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fitting. For example,
don’t try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or exp(x+b).

A technical issue: The larger the ratio of the largest and the smallest absolute parameter values, the slower the
fit will converge. If the ratio is close to or above the inverse of the machine floating point precision, it may take
next to forever to converge, or refuse to converge at all. You will either have to adapt your function to avoid
this, e.g., replace ’parameter’ by ’1e9*parameter’ in the function definition, and divide the starting value by 1e9
or use set fit prescale which does this internally according to the parameter starting values.

If you can write your function as a linear combination of simple functions weighted by the parameters to be
fitted, by all means do so. That helps a lot, because the problem is no longer nonlinear and should converge
with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation courses, may have you first fit some
functions to your data, perhaps in a multi-step process of accounting for several aspects of the underlying
theory one by one, and then extract the information you really wanted from the fitting parameters of those
functions. With fit, this may often be done in one step by writing the model function directly in terms of the
desired parameters. Transforming data can also quite often be avoided, though sometimes at the cost of a more
difficult fit problem. If you think this contradicts the previous paragraph about simplifying the fit function, you
are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg algorithm can’t
calculate parameter values for the next iteration. Try different starting values, writing the function in another
form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of summarizes all these
issues: "Nonlinear fitting is an art!"

142 gnuplot 6.1

Function blocks

The function command signals the definition of a here-document containing a named block of gnuplot code
that can be called as a function. As with data blocks, the name of a function block must begin with a ’$’. Up to
nine named parameters may be specified as part of the definition. These names may be used inside the function
block as local variables. See local (p. 146) and scope (p. 81).

Once the function block is defined, you can invoke it by name anywhere that a normal function could be used.
If the return value is not relevant, the function block may be invoked by an "evaluate" command rather than
as part of an assignment expression.

Example:
function $sinc(arg) << EOF

if (arg == 0) { return 1.0 }
return sin(arg) / arg

EOF

gnuplot> plot $sinc(x) with lines title "sinc(x) as a function block"

It is not necessary to specify a list of named arguments to a function block at the time it is declared. The
number and values of arguments to the function passed from the command line can be be accessed from
inside the function block as an integer variable ARGC and a corresponding array ARGV[ARGC]. See ARGV
(p. 130). This allows defining a function block that can operate on a variable number of arguments. Unlike
loading a file via a call statement, arguments are not repackaged as string variables (e.g. ARG1).

Example:
function $max << EOF

local max = real("-Inf")
if (ARGC == 0) { return NaN }
do for [i=1:ARGC] {

if (max < ARGV[i]) {
max = ARGV[i]

}
}
return max

EOF
gnuplot> foo = $max(f(A), 2.0, C, Array[3])
gnuplot> baz = $max(foo, 100.)

The primary motivation for function block support is to allow definition of complicated functions directly in
gnuplot. Execution is of course slower than if the same function were coded in C or Fortran, but this is
acceptable for many purposes. If execution speed matters then the function can be implemented later as a
plugin instead (see plugins (p. 81)).

A second use for function blocks is to allow execution of gnuplot commands in a context they otherwise could
not appear. Suppose for example you want to plot data from two csv files, but one file uses comma-separated
fields while the other uses semicolon-separated fields. Normally this property would have been set by a previous
set datafile command and would have to match all files used by the plot command. However we can define a
function block to invoke as a definition immediately before each file is referenced in the plot.

function $set_csv(char) << EOF
set datafile separator char

EOF
plot tmp=$set_csv(",") FILE1, tmp=$set_csv(";") FILE2

Limitations:

gnuplot 6.1 143

• Data blocks and function blocks cannot be defined inside a function block.
• Pseudofile ’-’ cannot be used to read data inside a function block.
• These commands cannot be executed inside a function block: reset, shell, !<shell command>.
• A plot, replot, splot, refresh, stats, vfill, or fit command is accepted in a function block only if none
of those commands is already in progress. E.g. you cannot use stats in a function block called by a plot
command, you cannot invoke plot from inside a fit command, etc.

A non-trivial example of using function blocks to implement and plot a 15-term Lanczos approximation for the
complex lngamma function is provided in the demo collection as function_block.dem

The function block implementation is slower by a factor of roughly 25 compared to the built-in lnGamma
function using the same algorithm coded directly in C. Nevertheless it is still fast enough for 3D interactive
rotation. The function definitions used in that demo are show below.

Function block implementation of logΓ(z) using a 15-term Lanczos approximation

array coef[15] = [...]

function $Lanczos(z) << EOD
local Sum = coef[1] + sum [k=2:15] coef[k] / (z + k - 1)
local temp = z + 671./128.
temp = (z + 0.5) * log(temp) - temp
temp = temp + log(sqrt(2*pi) * Sum/z)
return temp

EOD

function $Reflect(z) << EOD
local w = $Lanczos(1.0 - z)
local temp = log(sin(pi * z))
return log(pi) - (w + temp)

EOD

my_lngamma(z) = (z == 0) ? NaN : (real(z) < 0.5) ? $Reflect(z) : $Lanczos(z)

http://www.gnuplot.info/demo_6.0/function_block.html

144 gnuplot 6.1

Help

The help command displays built-in help. To specify information on a particular topic use the syntax:
help {<topic>}

If <topic> is not specified, a short message is printed about gnuplot. After help for the requested topic is
given, a menu of subtopics is given; help for a subtopic may be requested by typing its name, extending the help
request. After that subtopic has been printed, the request may be extended again or you may go back one level
to the previous topic. Eventually, the gnuplot command line will return.

If a question mark (?) is given as the topic, the list of topics currently available is printed on the screen.

History

The history command prints or saves previous commands in the history list, or reexecutes a previous entry
in the list. To modify the behavior of this command or the location of the saved history file, see set history
(p. 211).

Input lines with history as their first command are not stored in the command history.

Examples:
history # show the complete history
history 5 # show last 5 entries in the history
history quiet 5 # show last 5 entries without entry numbers
history "hist.gp" # write the complete history to file hist.gp
history "hist.gp" append # append the complete history to file hist.gp
history 10 "hist.gp" # write last 10 commands to file hist.gp
history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe
history ?load # show all history entries starting with "load"
history ?"set c" # like above, several words enclosed in quotes
hist !"set xr" # like above, several words enclosed in quotes
hist !55 # reexecute the command at history entry 55

If

Syntax:
if (<condition>) { <commands>;

<commands>
<commands>

} else if (<condition>) {
<commands>

} else {
<commands>

}

This version of gnuplot supports block-structured if/else statements. If the keyword if or else is immediately
followed by an opening "{", then conditional execution applies to all statements, possibly on multiple input
lines, until a matching "}" terminates the block. If commands may be nested.

Prior to gnuplot version 5 the scope of if/else commands was limited to a single input line. Now a multi-line
clause may be enclosed in curly brackets. The old syntax is still honored but cannot be used inside a bracketed
clause.

Old syntax:

gnuplot 6.1 145

if (<condition>) <command-line> [; else if (<condition>) ...; else ...]

If no opening "{" follows the if keyword, the command(s) in <command-line> will be executed if
<condition> is true (non-zero) or skipped if <condition> is false (zero). Either case will consume com-
mands on the input line until the end of the line or an occurrence of else. Note that use of ; to allow multiple
commands on the same line will not end the conditionalized commands.

For

The plot, splot, set and unset commands may optionally contain an iteration clause. This has the effect of
executing the basic command multiple times, each time re-evaluating any expressions that make use of the
iteration control variable. Iteration of arbitrary command sequences can be requested using the do command.
Three forms of iteration clause are currently supported:

for [intvar = start:end{:increment}]
for [stringvar in "A B C D"]
for [element in Array]

Examples:
plot for [filename in "A.dat B.dat C.dat"] filename using 1:2 with lines
plot for [basename in "A B C"] basename.".dat" using 1:2 with lines
set for [i = 1:10] style line i lc rgb "blue"
unset for [tag = 100:200] label tag
Array animals = ["dog", "cat", "mouse", "llama"]
do for [creature in animals] {

INFILE = creature.".dat"
OUTFILE = creature.".pdf"
plot INFILE with boxes title creature

}

Nested iteration is supported:
set for [i=1:9] for [j=1:9] label i*10+j sprintf("%d",i*10+j) at i,j

See additional documentation for iteration (p. 63), do (p. 131).

Import

The import command associates a user-defined function name with a function exported by an external shared
object. This constitutes a plugin mechanism that extends the set of functions available in gnuplot.

Syntax:
import func(x[,y,z,...]) from "sharedobj[:symbol]"

Examples:
make the function myfun, exported by "mylib.so" or "mylib.dll"
available for plotting or numerical calculation in gnuplot
import myfun(x) from "mylib"
import myfun(x) from "mylib:myfun" # same as above
make the function theirfun, defined in "theirlib.so" or "theirlib.dll"
available under a different name
import myfun(x,y,z) from "theirlib:theirfun"

The program extends the name given for the shared object by either ".so" or ".dll" depending on the operating
system, and searches for it first as a full path name and then as a path relative to the current directory. The op-
erating system itself may also search any directories in LD_LIBRARY_PATH or DYLD_LIBRARY_PATH.
See plugins (p. 81).

146 gnuplot 6.1

Load

The load command executes each line of the specified input file as if it had been typed in interactively. Files
created by the save command can later be loaded. Any text file containing valid gnuplot commands can be
executed by a load command. Files being loaded may themselves contain load or call commands. To pass
arguments to a loaded file, see call (p. 129).

Syntax:
load "<input-file>"
load $datablock

The name of the input file must be enclosed in quotes.

The special filename "-"may be used to load commands from standard input. This allows a gnuplot command
file to accept some commands from standard input. Please see help for batch/interactive (p. 36) for more
details.

On systems that support a popen function, the load file can be read from a pipe by starting the file name with a
’<’.

Examples:
load 'work.gnu'
load "func.dat"
load "< loadfile_generator.sh"

The load command is performed implicitly on any file names given as arguments to gnuplot. These are loaded
in the order specified, and then gnuplot exits.

It is also possible to execute commands from lines of text stored internally. See function blocks (p. 142). A
function block may be defined in-line or read from a file. The commands in a function block may be executed
repeatedly using evaluate on the internal copy rather than reloading a file.

Local

Syntax:
local foo = <expression>
local array foo[size]

The local keyword introduces declaration of a variable whose scope is limited to the execution of the code
block in which it is declared. Declaration is optional, but without it all variables are global. If the name of a
local variable duplicates the name of a global variable, the global variable is shadowed until exit from the local
scope. See scope (p. 81).

Local declarations may be used to prevent a global variable from being unintentionally overwritten by a call or
load statement. They are particularly useful inside a function block. The local command is also valid inside
the code block in curly brackets following an if, else, do for, or while statement.

Example: Suppose you want to write a script "plot_all_data.gp" containing commands that plot a bunch of data
sets. You want to call this convenience script from the command line or from other scripts without worrying
that it trashes any variables with names "file" or "files" or "dataset" or "outfile". The variable "file" is
inherently local because it is an iteration variable (see scope (p. 81)) but the other three names need keyword
local to protect them.

plot_all_data.gp:

gnuplot 6.1 147

local files = system("ls -1 *.dat")
do for [file in files] {

local dataset = file[1:strstrt(file,".dat")-1]
local outfile = dataset . ".png"
set output outfile
plot file with lines title dataset

}
unset output

Lower

See raise (p. 179).

Pause

The pause command displays any text associated with the command and then waits a specified amount of time
or until the carriage return is pressed. pause is especially useful in conjunction with load files.

Syntax:
pause <time> {"<string>"}
pause mouse {<endcondition>}{, <endcondition>} {"<string>"}
pause mouse close

<time>may be any constant or floating-point expression. pause -1 will wait until a carriage return is hit, zero
(0) won’t pause at all, and a positive number will wait the specified number of seconds.

If the current terminal supports mousing, then pause mouse will terminate on either a mouse click or on
ctrl-C. For all other terminals, or if mousing is not active, pause mouse is equivalent to pause -1.

If one or more end conditions are given after pause mouse, then any one of the conditions will terminate the
pause. The possible end conditions are keypress, button1, button2, button3, close, and any. If the pause
terminates on a keypress, then the ascii value of the key pressed is returned in MOUSE_KEY. The character
itself is returned as a one character string inMOUSE_CHAR. Hotkeys (bind command) are disabled if keypress
is one of the end conditions. Zooming is disabled if button3 is one of the end conditions.

In all cases the coordinates of the mouse are returned in variables MOUSE_X, MOUSE_Y, MOUSE_X2,
MOUSE_Y2. See mouse variables (p. 79).

Note: Since pause communicates with the operating system rather than the graphics, it may behave differently
with different device drivers (depending upon how text and graphics are mixed).

Examples:
pause -1 # Wait until a carriage return is hit
pause 3 # Wait three seconds
pause -1 "Hit return to continue"
pause 10 "Isn't this pretty? It's a cubic spline."
pause mouse "Click any mouse button on selected data point"
pause mouse keypress "Type a letter from A-F in the active window"
pause mouse button1,keypress
pause mouse any "Any key or button will terminate"

The variant "pause mouse key" will resume after any keypress in the active plot window. If you want to wait
for a particular key to be pressed, you can use a loop such as:

148 gnuplot 6.1

print "I will resume after you hit the Tab key in the plot window"
plot <something>
pause mouse key
while (MOUSE_KEY != 9) {

pause mouse key
}

Pause mouse close

The command pause mouse close is a specific example of pausing to wait for an external event. In this case
the program waits for a "close" event from the plot window. Exactly how to generate such an event varies
with your desktop environment and configuration, but usually you can close the plot window by clicking on
some widget on the window border or by typing a hot-key sequence such as <alt><F4> or <ctrl>q. If you
are unsure whether a suitable widget or hot-key is available to the user, you may also want to define a hot-key
sequence using gnuplot’s own mechanism. See bind (p. 78).

The command sequence belowmay be useful when running gnuplot from a script rather than from the command
line.

plot <...whatever...>
bind all "alt-End" "exit gnuplot"
pause mouse close

Pseudo-mousing during pause

Some terminals use the same window for text entry and graphical display, including terminal types dumb,
sixel, kitty, and domterm. These terminals do not currently support mousing per se, but during a pause
mouse command they interpret keystrokes in the same way that a mousing terminal would. I.e. l toggles
log-scale axes, a autoscales the current plot, left/right/up/down arrow keys change the view angle of 3D plots
and perform incremental pan/zoom steps for 2D plots. h displays a list of key bindings. A carriage return
terminates the pause and restores normal command line processing.

Plot

plot and splot are the primary commands for drawing plots with gnuplot. They offer many different graphical
representations for functions and data. plot is used to draw 2D functions and data. splot draws 2D projections
of 3D surfaces and data.

Syntax:
plot {<axis-ranges>} <plot-element> {, <plot-element>, <plot-element>}

Each plot element consists of a definition, a function, or a data source together with optional properties or
modifiers:

plot-element:
{<iteration>}
<definition> | {sampling-range} <function> | <data source>

| keyentry
{axes <axes>} {<title-spec>}
{with <style>}

gnuplot 6.1 149

The graphical representation of each plot element is determined by the keyword with, e.g. with lines or with
boxplot. See plotting styles (p. 90).

The data to be plotted is either generated by a function (two functions if in parametric mode), read from a data
file, read from a named data block that was defined previously, or extracted from an array. Multiple datafiles,
data blocks, arrays, and/or functions may be plotted in a single plot command separated by commas.

Many additional keywords are specific to data plots. See plot datafile (p. 154). See alse data (p. 154), inline
data (p. 63), functions (p. 171).

A plot-element that contains the definition of a function or variable does not create any visible output, see third
example below.

Examples:

plot sin(x)
plot sin(x), cos(x)
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot "datafile.1" with lines, "datafile.2" with points
plot [t=1:10] [-pi:pi*2] tan(t), \

"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5

plot for [datafile in "spinach.dat broccoli.dat"] datafile

See also show plot (p. 293).

Axes

There are four possible sets of axes available; the keyword <axes> is used to select the axes for which a
particular line should be scaled. x1y1 refers to the axes on the bottom and left; x2y2 to those on the top and
right; x1y2 to those on the bottom and right; and x2y1 to those on the top and left. Ranges specified on the
plot command apply only to the first set of axes (bottom left).

Binary

BINARY DATA FILES:

It is necessary to provide the keyword binary after the filename. Adequate details of the file format must be
given on the command line or extracted from the file itself for a supported binary filetype. In particular, there
are two structures for binary files, binary matrix format and binary general format.

The binary matrix format contains a two dimensional array of 32 bit IEEE float values plus an additional
column and row of coordinate values. In the using specifier of a plot command, column 1 refers to the matrix
row coordinate, column 2 refers to the matrix column coordinate, and column 3 refers to the value stored in
the array at those coordinates.

The binary general format contains an arbitrary number of columns for which information must be specified at
the command line. For example, array, record, format and using can indicate the size, format and dimension
of data. There are a variety of useful commands for skipping file headers and changing endianess. There are
a set of commands for positioning and translating data since often coordinates are not part of the file when
uniform sampling is inherent in the data. Unlike reading from a text or matrix binary file, general binary does
not treat the generated columns as 1, 2 or 3 in the using list. Instead column 1 refers to column 1 of the file,
or as specified in the format list.

150 gnuplot 6.1

There are global default settings for the various binary options which may be set using the same syntax as the
options when used as part of the (s)plot <filename> binary ... command. This syntax is set datafile binary
.... The general rule is that common command-line specified parameters override file-extracted parameters
which override default parameters.

Binary matrix is the default binary format when no keywords specific to binary general are given, i.e., array,
record, format, filetype.

General binary data can be entered at the command line via the special file name ’-’. However, this is intended
for use through a pipe where programs can exchange binary data, not for keyboards. There is no "end of
record" character for binary data. Gnuplot continues reading from a pipe until it has read the number of points
declared in the array qualifier. See binary matrix (p. 295) or binary general (p. 150) for more details.

The index keyword is not supported, since the file format allows only one surface per file. The every and using
specifiers are supported. using operates as if the data were read in the above triplet form. Binary File
Splot Demo.

General

The binary keyword appearing alone indicates a binary data file that contains both coordinate information
describing a non-uniform grid and the value of each grid point (see binary matrix (p. 295)). Binary data in
any other format requires additional keywords to describe the layout of the data. Unfortunately the syntax of
these required additional keywords is convoluted. Nevertheless the general binary mode is particularly useful
for application programs sending large amounts of data to gnuplot.

Syntax:

plot '<file_name>' {binary <binary list>} ...
splot '<file_name>' {binary <binary list>} ...

General binary format is activated by keywords in <binary list> pertaining to information about file structure,
i.e., array, record, format or filetype. Otherwise, non-uniform matrix binary format is assumed. (See binary
matrix (p. 295) for more details.)

Gnuplot knows how to read a few standard binary file types that are fully self-describing, e.g. PNG images.
Type show datafile binary at the command line for a list. Apart from these, you can think of binary data files
as conceptually the same as text data. Each point has columns of information which are selected via the using
specification. If no format string is specified, gnuplot will read in a number of binary values equal to the largest
column given in the <using list>. For example, using 1:3 will result in three columns being read, of which
the second will be ignored. Certain plot types have an associated default using specification. For example, with
image has a default of using 1, while with rgbimage has a default of using 1:2:3.

Array

Describes the sampling array dimensions associated with the binary file. The coordinates will be generated by
gnuplot. A number must be specified for each dimension of the array. For example, array=(10,20) means the
underlying sampling structure is two-dimensional with 10 points along the first (x) dimension and 20 points
along the second (y) dimension. A negative number indicates that data should be read until the end of file. If
there is only one dimension, the parentheses may be omitted. A colon can be used to separate the dimensions
for multiple records. For example, array=25:35 indicates there are two one-dimensional records in the file.

http://www.gnuplot.info/demo/binary.html
http://www.gnuplot.info/demo/binary.html

gnuplot 6.1 151

Record

The binary record keyword provides array dimensions describing how data in a binary file are to be arranged
into an array. A number must be specified for each dimension of the array. For example, record=(10,20)
means the underlying structure is two-dimensional with 10 points along the first (x) dimension and 20 points
along the second (y) dimension. A negative number indicates that data should be read until the end of file.

If there is only one dimension, the parentheses may be omitted. A colon can be used to separate the dimensions
for multiple records. E.g. record=25:35 describes a file containing two one-dimensional records.

This keyword serves the same function as array and has the same syntax. However, array causes gnuplot to
generate coordinate information while record does not. Use record when the coordinates are to be read from
columns of the binary data file records.

Skip

This keyword allows you to skip sections of a binary file. For instance, if the file contains a 1024 byte header
before the start of the data region you would probably want to use

plot '<file_name>' binary skip=1024 ...

If there are multiple records in the file, you may specify a leading offset for each. For example, to skip 512
bytes before the 1st record and 256 bytes before the second and third records

plot '<file_name> binary record=356:356:356 skip=512:256:256 ...

Format

The default binary format is a float. For more flexibility, the format can include details about variable sizes.
For example, format="%uchar%int%float" associates an unsigned character with the first using column,
an int with the second column and a float with the third column. If the number of size specifications is less than
the greatest column number, the size is implicitly taken to be similar to the last given variable size.

Furthermore, similar to the using specification, the format can include discarded columns via the * character
and have implicit repetition via a numerical repeat-field. For example, format="%*2int%3float" causes
gnuplot to discard two ints before reading three floats. To list variable sizes, type show datafile binary data-
sizes. There are a group of names that are machine dependent along with their sizes in bytes for the particular
compilation. There is also a group of names which attempt to be machine independent.

Blank

Some plot styles expect a blank line to separate groups of data points read from a text input file. For instance
the vertices of one polygon in an input text data stream are separated from those of the next polygon by a blank
line. Since there are no actual blank lines in a binary file, this option allows a special record in a general binary
file to be interpreted as if it were a blank line. The only option currently supported is blank=NaN, which
means that a value of NaN in the first field of a record causes the entire record to be treated as if it were a blank
line.

Example:
plot DATA binary format="%2float" blank=NAN using 1:2 with polygons

152 gnuplot 6.1

Endian

Often the endianess of binary data in the file does not agree with the endianess used by the platform on which
gnuplot is running. Several words can direct gnuplot how to arrange bytes. For example endian=little means
treat the binary file as having byte significance from least to greatest. The options are

little: least significant to greatest significance
big: greatest significance to least significance

default: assume file endianess is the same as compiler
swap (swab): Interchange the significance. (If things

don't look right, try this.)

Gnuplot can support "middle" ("pdp") endian if it is compiled with that option.

Filetype

For some standard binary file formats gnuplot can extract all the necessary information from the file in question.
As an example, "format=edf" will read ESRF Header File format files. For a list of the currently supported
file formats, type show datafile binary filetypes.

There is a special file type called auto for which gnuplot will check if the binary file’s extension is a quasi-
standard extension for a supported format.

Command line keywords may be used to override settings extracted from the file. The settings from the file
override any defaults. See set datafile binary (p. 199).

Avs avs is one of the automatically recognized binary file types for images. AVS is an extremely simple
format, suitable mostly for streaming between applications. It consists of 2 longs (xwidth, ywidth) followed by
a stream of pixels, each with four bytes of information alpha/red/green/blue.

Edf edf is one of the automatically recognized binary file types for images. EDF stands for ESRF Data
Format, and it supports both edf and ehf formats (the latter means ESRF Header Format). More information
on specifications can be found at
http://www.edfplus.info/specs

Png If gnuplot was configured to use the libgd library for png/gif/jpeg output, then it can also be used to read
these same image types as binary files. You can use an explicit command

plot 'file.png' binary filetype=png

Or the file type will be recognized automatically from the extension if you have previously requested
set datafile binary filetype=auto

Keywords

The following keywords apply only when generating coordinates from binary data files. That is, the control
mapping the individual elements of a binary array, matrix, or image to specific x/y/z positions.

gnuplot 6.1 153

Scan A great deal of confusion can arise concerning the relationship between how gnuplot scans a binary file
and the dimensions seen on the plot. To lessen the confusion, conceptually think of gnuplot always scanning
the binary file point/line/plane or fast/medium/slow. Then this keyword is used to tell gnuplot how to map
this scanning convention to the Cartesian convention shown in plots, i.e., x/y/z. The qualifier for scan is a
two or three letter code representing where point is assigned (first letter), line is assigned (second letter), and
plane is assigned (third letter). For example, scan=yx means the fastest, point-by-point, increment should be
mapped along the Cartesian y dimension and the middle, line-by-line, increment should be mapped along the
x dimension.

When the plotting mode is plot, the qualifier code can include the two letters x and y. For splot, it can include
the three letters x, y and z.

There is nothing restricting the inherent mapping from point/line/plane to apply only to Cartesian coordinates.
For this reason there are cylindrical coordinate synonyms for the qualifier codes where t (theta), r and z are
analogous to the x, y and z of Cartesian coordinates.

Transpose Shorthand notation for scan=yx or scan=yxz. I.e. it affects the assignment of pixels to scan lines
during input. To instead transpose an image when it is displayed try

plot 'imagefile' binary filetype=auto flipx rotate=90deg with rgbimage

Dx, dy, dz When gnuplot generates coordinates, it uses the spacing described by these keywords. For example
dx=10 dy=20would mean space samples along the x dimension by 10 and space samples along the y dimension
by 20. dy cannot appear if dx does not appear. Similarly, dz cannot appear if dy does not appear. If the
underlying dimensions are greater than the keywords specified, the spacing of the highest dimension given is
extended to the other dimensions. For example, if an image is being read from a file and only dx=3.5 is given
gnuplot uses a delta x and delta y of 3.5.

The following keywords also apply only when generating coordinates. However they may also be used with
matrix binary files.

Flipx, flipy, flipz Sometimes the scanning directions in a binary datafile are not consistent with that assumed
by gnuplot. These keywords can flip the scanning direction along dimensions x, y, z.

Origin When gnuplot generates coordinates based upon transposition and flip, it attempts to always position
the lower left point in the array at the origin, i.e., the data lies in the first quadrant of a Cartesian system after
transpose and flip.

To position the array somewhere else on the graph, the origin keyword directs gnuplot to position the lower
left point of the array at a point specified by a tuple. The tuple should be a double for plot and a triple for
splot. For example, origin=(100,100):(100,200) is for two records in the file and intended for plotting in two
dimensions. A second example, origin=(0,0,3.5), is for plotting in three dimensions.

Center Similar to origin, this keyword will position the array such that its center lies at the point given by
the tuple. For example, center=(0,0). Center does not apply when the size of the array is Inf.

154 gnuplot 6.1

Rotate The transpose and flip commands provide some flexibility in generating and orienting coordinates.
However, for full degrees of freedom, it is possible to apply a rotational vector described by a rotational angle
in two dimensions.

The rotate keyword applies to the two-dimensional plane, whether it be plot or splot. The rotation is done
with respect to the positive angle of the Cartesian plane.

The angle can be expressed in radians, radians as a multiple of pi, or degrees. For example, rotate=1.5708,
rotate=0.5pi and rotate=90deg are equivalent.

If origin is specified, the rotation is done about the lower left sample point before translation. Otherwise, the
rotation is done about the array center.

Perpendicular For splot, the concept of a rotational vector is implemented by a triple representing the vector
to be oriented normal to the two-dimensional x-y plane. Naturally, the default is (0,0,1). Thus specifying both
rotate and perpendicular together can orient data myriad ways in three-space.

The two-dimensional rotation is done first, followed by the three-dimensional rotation. That is, if R’ is the
rotational 2 x 2 matrix described by an angle, and P is the 3 x 3 matrix projecting (0,0,1) to (xp,yp,zp), let R
be constructed from R’ at the upper left sub-matrix, 1 at element 3,3 and zeros elsewhere. Then the matrix
formula for translating data is v’ = P R v, where v is the 3 x 1 vector of data extracted from the data file. In
cases where the data of the file is inherently not three-dimensional, logical rules are used to place the data in
three-space. (E.g., usually setting the z-dimension value to zero and placing 2D data in the x-y plane.)

Data

Data provided in a file can be plotted by giving the name of the file (enclosed in single or double quotes) on
the plot command line. Data may also come from an input stream that is not a file. See special-filenames
(p. 166), piped-data (p. 167), datablocks (p. 63).

Syntax:
plot '<file_name>' {binary <binary list>}

{{nonuniform|sparse} matrix}
{index <index list> | index "<name>"}
{every <every list>}
{skip <number-of-lines>}
{using <using list>}
{convexhull} {concavehull}
{smooth <option>}
{bins <options>}
{mask}
{volatile} {zsort} {noautoscale}
{if (<expression>)}

The modifiers binary, index, every, skip, using, smooth, bins, mask, convexhull, concavehull, volatile,
zsort, and if are discussed separately. In brief:

• skip N tells the program to ignore N lines at the start of the input file

• binary indicates that the file contains binary data rather than text

• bins sorts individual input points into equal-sized intervals along x and plots a single accumulated value
per interval

gnuplot 6.1 155

• every specifies which points within a single data set are to be plotted
• if (<expression>) filters the input data to accept only lines that satisfy a certain condition.
• index selects which data sets in a multi-data-set file are to be plotted
• smooth performs simple filtering, interpolation, or curve-fitting of the data prior to plotting
• convexhull and concavehull, either alone or in combination with smooth, replaces the points in the
input data set with a new set of points that constitute the vertices of a bounding polygon.

• mask filters the data through a previously defined mask to plot only a selected subset of pixels in an
image or a selected region of a pm3d surface.

• using specifies which columns in the file are to be used in which order
• volatile indicates that the content of the file may not be available to reread later and therefore it should
be retained internally for re-use.

• zsort sorts each block of input data on z

splot has a similar syntax but supports only some of the filter and smoothing options.

The noautoscale keyword means that the points making up this plot will be ignored when automatically deter-
mining axis range limits.

TEXT DATA FILES:

Each non-empty line in a data file describes one data point, except that records beginning with # will be treated
as comments and ignored.

Depending on the plot style and options selected, from one to eight values are read from each line and associated
with a single data point. See using (p. 167).

The individual records on a single line of data must be separated by white space (one or more blanks or tabs)
or a special field separator character which is specified by the set datafile command. A single field may itself
contain white space characters if the entire field is enclosed in a pair of double quotes, or if a field separator
other than white space is in effect. Whitespace inside a pair of double quotes is ignored when counting columns,
so the following datafile line has three columns:

1.0 "second column" 3.0

Data may be written in exponential format with the exponent preceded by the letter e or E. The fortran expo-
nential specifiers d, D, q, and Q may also be used if the command set datafile fortran is in effect.

Blank records in a data file are significant. Single blank records designate discontinuities in a plot; no line will
join points separated by a blank records (if they are plotted with a line style). Two blank records in a row
indicate a break between separate data sets. See index (p. 161).

If autoscaling has been enabled (set autoscale), the axes are automatically extended to include all datapoints,
with a whole number of tic marks if tics are being drawn. This has two consequences: i) For splot, the corner
of the surface may not coincide with the corner of the base. In this case, no vertical line is drawn. ii) When
plotting data with the same x range on a dual-axis graph, the x coordinates may not coincide if the x2tics are
not being drawn. This is because the x axis has been autoextended to a whole number of tics, but the x2 axis
has not. The following example illustrates the problem:

reset; plot '-', '-' axes x2y1
1 1
19 19
e

156 gnuplot 6.1

1 1
19 19
e

To avoid this, you can use the noextend modifier of the set autoscale or set [axis]range commands. This
turns off extension of the axis range to include the next tic mark.

Label coordinates and text can also be read from a data file (see labels (p. 112)).

Columnheaders

Extra lines at the start of a data file may be explicitly ignored using the skip keyword in the plot command.
A single additional line containing text column headers may be present. It is skipped automatically if the plot
command refers explicitly to column headers, e.g. by using them for titles. Otherwise you may need to skip it
explicitly either by adding one to the skip count or by setting the attribute set datafile columnheaders. See
skip (p. 162), columnhead (p. 53), autotitle columnheader (p. 215), set datafile (p. 197).

Csv files

Syntax:
set datafile separator {whitespace | tab | comma | "chars"}

"csv" is short for "comma-separated values". The term "csv file" is loosely applied to files in which data
fields are delimited by a specific character, not necessarily a comma. To read data from a csv file you must
tell gnuplot what the field-delimiting character is. For instance to read from a file using semicolon as a field
delimiter:

set datafile separator ";"

See set datafile separator (p. 198). This applies only to files used for input. To create a csv file on output, use
the corresponding separator option to set table.

Every

The every keyword allows a periodic sampling of a data set to be plotted.

For ordinary files a "point" single record (line); a "block" of data is a set of consecutive records with blank
lines before and after the block.

For matrix data a "block" and "point" correspond to "row" and "column". See matrix every (p. 297).

Syntax:
plot 'file' every {<point_incr>}

{:{<block_incr>}
{:{<start_point>}
{:{<start_block>}
{:{<end_point>}
{:<end_block>}}}}}

The data points to be plotted are selected according to a loop from <start_point> to <end_point> with
increment <point_incr> and the blocks according to a loop from <start_block> to <end_block> with
increment <block_incr>.

gnuplot 6.1 157

The first datum in each block is numbered ’0’, as is the first block in the file.

Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start values to the first point or block,
and the end values to the last point or block. ’:’ at the end of the every option is not permitted. If every is not
specified, all points in all lines are plotted.

Examples:
every :::3::3 # selects just the fourth block ('0' is first)
every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block

See simple plot demos (simple.dem)

, Non-parametric splot demos

, and Parametric splot demos

.

Example datafile

This example plots the data in the file "population.dat" and a theoretical curve:
pop(x) = 103*exp((1965-x)/10)
set xrange [1960:1990]
plot 'population.dat', pop(x)

The file "population.dat" might contain:
Gnu population in Antarctica since 1965

1965 103
1970 55
1975 34
1980 24
1985 10

Binary examples:
Selects two float values (second one implicit) with a float value
discarded between them for an indefinite length of 1D data.
plot '<file_name>' binary format="%float%*float" using 1:2 with lines

The data file header contains all details necessary for creating
coordinates from an EDF file.
plot '<file_name>' binary filetype=edf with image
plot '<file_name>.edf' binary filetype=auto with image

Selects three unsigned characters for components of a raw RGB image
and flips the y-dimension so that typical image orientation (start
at top left corner) translates to the Cartesian plane. Pixel
spacing is given and there are two images in the file. One of them
is translated via origin.
plot '<file_name>' binary array=(512,1024):(1024,512) format='%uchar' \

dx=2:1 dy=1:2 origin=(0,0):(1024,1024) flipy u 1:2:3 w rgbimage

Four separate records in which the coordinates are part of the
data file. The file was created with a endianess different from
the system on which gnuplot is running.
splot '<file_name>' binary record=30:30:29:26 endian=swap u 1:2:3

Same input file, but this time we skip the 1st and 3rd records
splot '<file_name>' binary record=30:26 skip=360:348 endian=swap u 1:2:3

See also binary matrix (p. 295).

http://www.gnuplot.info/demo/simple.html
http://www.gnuplot.info/demo/surface1.html
http://www.gnuplot.info/demo/surface2.html

158 gnuplot 6.1

Filters

Filter operations are applied immediately after reading input data, before applying any smoothing or style-
specific processing options. In general the purpose of a filter is to replace the original full set of input points
with a selected subset of points, possibly modified, regrouped, or reordered, The filters currently supported are
bins, convexhull, concavehull, delaunay, if, mask, sharpen, and zsort.

Bins Syntax:
plot 'DATA' using <XCOL> {:<YCOL>} bins{=<NBINS>}

{binrange [<LOW>:<HIGH>]} {binwidth=<width>}
{binvalue={sum|avg}}

The bins option to a plot command first assigns the original data to equal width bins on x and then plots a single
value per bin. The default number of bins is controlled by set samples, but this can be changed by giving an
explicit number of bins in the command.

If no binrange is given, the range is taken from the extremes of the x values found in ’DATA’.

Given the range and the number of bins, bin width is calculated automatically and points are assigned to bins 0
to NBINS-1

BINWIDTH = (HIGH - LOW) / (NBINS-1)
xmin = LOW - BINWIDTH/2
xmax = HIGH + BINWIDTH/2
first bin holds points with (xmin <= x < xmin + BINWIDTH)
last bin holds points with (xmax-BINWIDTH <= x < xman)
each point is assigned to bin i = floor(NBINS * (x-xmin)/(xmax-xmin))

Alternatively you can provide a fixed bin width, in which case nbins is calculated as the smallest number of bins
that will span the range.

On output bins are plotted or tabulated by midpoint. E.g. if the program calculates bin width as shown above,
the x coordinate output for the first bin is x=LOW (not x=xmin).

If only a single column is given in the using clause then each data point contributes a count of 1 to the accumu-
lation of total counts in the bin for that x coordinate value. If a second column is given then the value in that
column is added to the accumulation for the bin. Thus the following two plot commands are equivalent:

plot 'DATA" using N bins=20
set samples 20
plot 'DATA' using (column(N)):(1)

By default the y value plotted for each bin is the sum of the y values over all points in that bin. This corresponds
to option binvalue=sum. The alternative binvalue=avg plots the mean y value for points in that bin.

For related processing options see smooth frequency (p. 165) and smooth kdensity (p. 165).

Convexhull Convexhull is not a plot style. It can appear either alone as a filter keyword or in combination
with smooth path and/or expand <increment>.

plot FOO using x:y convexhull
plot FOO using x:y convexhull smooth path
plot FOO using x:y convexhull expand <increment> {smooth path}

gnuplot 6.1 159

-20

-10

 0

 10

 20

-20 -10 0 10 20

Convex hull bounding scattered points
The points in FOO are replaced by a subset of the original
points that constitute the unique bounding convex poly-
gon, the convex hull. The vertices of this polygon are out-
put in clockwise order to form a closed curve. The first
and last points of the generated curve are equal, making it
suitable for plotting with styles lines, polygons, or filled-
curves. The convex hull may also be useful as a mask to
selectively render the region of an image or a pm3d sur-
face that contains all the original data points. See mask-
ing (p. 115).

If the keyword smooth is present, the vertices are then used as guide points to generate a smooth closed curve
(see smooth path (p. 164)). By default this smoothed curve runs through the bounding points.

The optional expand keyword and increment shift the edge segments of the hull away from the interior by an
incremental distance. The displaced segments are then connected using miter joins; this means that each vertex
of the original hull is replaced by two vertices, since there is now a gap between the to adjoining edges.

Concavehull EXPERIMENTAL (implementation details may change in a future release). Present only if
your copy of gnuplot was configured –enable-chi-shapes.

Concavehull is not a plot style. It is a filter that finds a bounding polygon, a "hull", of the input data points and
replaces the original points with an ordered subset of points that lie along the perimeter of this polygon. Unlike
the convex hull, which is uniquely defined for any set of points, more than one concave hull is possible. Various
schemes for selecting a concave hull exist; gnuplot generates hulls that are χ-shapes as defined by Duckham et
al. (2008) Patttern Recognition 41:3224-3236.

concave hull
chi_length = +Inf (convex hull)

chi_length = 25.0

chi_length = 20.0

chi_length = 16.0

For a given set of points, a χ-shape is generated by itera-
tive removal of triangles from the Delaunay triangulation.
Each iteration removes a single triangle subject to the cri-
teria: (1) A triangle is only eligible for removal if this
would not reduce the connectivity of the bounded shape
to contact at a single point; (2) one edge of the triangle
is the longest segment of the current perimeter; (3) this
edge is longer than a pre-selected characteristic length pa-
rameter that fully determines the χ-shape. In gnuplot this
characteristic length parameter is taken from user vari-
able chi_length. Iteration stops when there are no remaining eligible triangles. If chi_length is large, no
triangles are removed and the χ-shape is the original perimeter, i.e. the convex hull. As chi_length is reduced,
more and more triangles are removed and the resulting shape becomes increasingly less convex. Too-small
values of chi_length are undesirable.

160 gnuplot 6.1

concave hull smooth path expand 3.0
chi_length = +Inf (convex hull)

chi_length = 25.0

chi_length = 20.0

chi_length = 16.0

Appropriate choice of chi_length depends strongly on
the density and distribution of the input data points. If
no value for chi_length has been set by the user, gnuplot
will choose one automatically but there is no guarantee
that this value is suitable for your data. For the data
used in the figures shown here gnuplot would choose
chi_length=22.6 by default, which is 0.6 of the length
of the longest edge in the convex hull. You can change
the fraction of the longest edge used as a default with the
command set chi_shape fraction <value>

The value of chi_length used in the current plot, whether provided by the user or chosen by the program, is
saved to variable GPVAL_CHI_LENGTH.

The optional expand keyword and increment shift each edge segment of the hull away from the interior by a
fixed distance. This creates a new set of points describing a closed curve that lies outside all of the original
points. It can be combined with smooth path.

Delaunay Delaunay triangulation subdivides a set of 2D points into sets of three points such that no other
point in the original set lies within the circumcircle of the triangle that these three points define. It is imple-
mented in gnuplot as a filter operation that replaces the input set of points with a list of triangles in the format
expected by plot style "with polygons". This filter is used as a first step in finding concave hulls using χ-shapes
(see concavehull (p. 159)). It may also be applied explicitly to a projection of a set of 3D points onto the xy
plane in order to create a tessellated 3D surface. See delaunay.dem

EXPERIMENTAL (implementation details may change in a future release). Present only if your copy of
gnuplot was configured –enable-chi-shapes.

2D example
plot POINTS using 1:2 delaunay with polygons fillstyle empty

3D example
set pm3d border lc "black" lw 2
splot 'hemisphere.dat' using 1:2:3 delaunay with polygons

Mask

plot FOO using 1:2:3 mask with {pm3d|image}

Once a mask has been defined, you can use it as a filter to select only the region inside it from an image, pm3d,
or contourfill plot. See masking (p. 115).

Sharpen The sharpen filter applies only to function plots. It looks for extrema in the function being plotted,
which may not lie exactly at any of the x values sampled to generate the component line segments making up
the graph. The true local extrema are found by bisection and added to the set of sampled points. This reduces
but does not entirely eliminate truncation of sharp peaks due to coarse sampling.

Example:
set samples 150
set xrange [-8:8]
plot abs(sqrt(sin(x))) sharpen

http://www.gnuplot.info/demo_6.1/delaunay.html

gnuplot 6.1 161

Without the "sharpen" keyword, the resulting graph shows a continuous curve with minima at intervals of
pi that should reach zero but are artefactually truncated to apparent minimal y values between 0.02 and 0.20.
Adding the "sharpen" keyword produces instead a correct representation of the function with periodic sharp
minima that reach y=0.

The sharpen filter also looks for vertical discontinuities, such as the vertical edges in a step function, and tries
to place extra points immediately to either side of the edge so that it is not misrepresented as a diagonal line.

If

plot ... if (<expression>)
splot ... if (<expression>)

For each line of input data the expression in the if filter is evaluated and the line is accepted only if the resulting
value is true (non-zero). Any function or variable that would be valid inside a using specifier is also valid in
the filter expression, including data columns that are not otherwise used for plotting.

Data lines for which the expression evaluates to false (zero) are treated as if they were not present in the file (see
missing (p. 197)). This provides a more readable equivalent to the previously supported method that inserted
a logical test inside one of the using specifiers.

Old syntax (still accepted):
set datafile missing NaN
plot FOO using (strcol(1) eq "ABC" ? $2 : NaN):3 with linespoints
plot $DATA using 1:($2 < 999. ? $2 : NaN)

New syntax:
plot FOO using 2:3 with linespoints if (strcol(1) eq "ABC")
plot $DATA using 1:2 if ($2 < 999.)

Both the old and new examples select only the lines in input file FOO that have ABC in the first column, and
only lines in $DATA where the value in column 2 is less than 999.

This filter is also accepted for splot commands, with the slight difference that when the filter expression returns
0 (false) the point is treated as undefined rather than missing.

Zsort

plot FOO using x:y:z:color zsort with points lc palette

Input data is sorted immediately after input, prior to applying any smoothing options. Note that some smoothing
options will re-sort the data, in which case zsort has no effect on the plot. If z is not auto-scaled, points with z
value out of range are flagged but not deleted.

The intended use is to filter presentation of 2D scatter plots with a huge number of points so that the distribution
of high-scoring points remains evident. Sorting the points on z guarantees that points with a high z-value will
not be obscured by points with lower z-values.

Index

The index keyword allows you to select specific data sets in a multi-data-set file for plotting. For array indexing
please see arrays (p. 59).

Syntax:
plot 'file' index { <m>{:<n>{:<p>}} | "<name>" }

162 gnuplot 6.1

Data sets are separated by pairs of blank records. index <m> selects only set <m>; index <m>:<n>
selects sets in the range <m> to <n>; and index <m>:<n>:<p> selects indices <m>, <m>+<p>,
<m>+2<p>, etc., but stopping at <n>. Following C indexing, the index 0 is assigned to the first data set in
the file. Specifying too large an index results in an error message. If <p> is specified but <n> is left blank
then every <p>-th dataset is read until the end of the file. If index is not specified, the entire file is plotted as
a single data set.

Example:
plot 'file' index 4:5

For each point in the file, the index value of the data set it appears in is available via the pseudo-column
column(-2). This leads to an alternative way of distinguishing individual data sets within a file as shown below.
This is more awkward than the index command if all you are doing is selecting one data set for plotting, but is
very useful if you want to assign different properties to each data set. See pseudocolumns (p. 169), lc variable
(p. 66).

Example:
plot 'file' using 1:(column(-2)==4 ? $2 : NaN) # very awkward
plot 'file' using 1:2:(column(-2)) linecolor variable # very useful!

index ’<name>’ selects the data set with name ’<name>’. Names are assigned to data sets in comment lines.
The comment character and leading white space are removed from the comment line. If the resulting line starts
with <name>, the following data set is now named <name> and can be selected.

Example:
plot 'file' index 'Population'

Please note that every comment that starts with <name> will name the following data set. To avoid problems
it may be useful to choose a naming scheme like ’== Population ==’ or ’[Population]’.

Skip

The skip keyword tells the program to skip lines at the start of a text (i.e. not binary) data file. The lines that
are skipped do not count toward the line count used in processing the every keyword. Note that skip N skips
lines only at the start of the file, whereas every ::N skips lines at the start of every block of data in the file. See
also binary skip (p. 151) for a similar option that applies to binary data files.

Smooth

gnuplot includes a few routines for interpolation and other operations applied to data as it is input; these are
grouped under the smooth option. More sophisticated data processing may be performed by preprocessing the
data externally or by using fit with an appropriate model. See also the discussion of plot filters (p. 158).

Syntax:
smooth {unique | frequency | fnormal | cumulative | cnormal

| csplines | acsplines | mcsplines bezier | sbezier
| path
| kdensity {bandwidth} {period}
| unwrap}

http://www.gnuplot.info/demo/multimsh.html

gnuplot 6.1 163

The unique, frequency, fnormal, cumulative and cnormal options sort the data on x and then plot some
aspect of the distribution of x values.

The spline and Bezier options determine coefficients describing a continuous curve between the endpoints of
the data. This curve is then plotted in the same manner as a function, that is, by finding its value at uniform
intervals along the abscissa (see set samples (p. 257)) and connecting these points with straight line segments.
If the data set is interrupted by blank lines or undefined values a separate continuous curve is fit for each
uninterrupted subset of the data. Adjacent separately fit segments may be separated by a gap or discontinuity.

unwrap manipulates the data to avoid jumps of more than pi by adding or subtracting multiples of 2*pi.

If autoscale is in effect, axis ranges will be computed for the final curve rather than for the original data.

If autoscale is not in effect, and a spline curve is being generated, sampling of the spline fit is done across the
intersection of the x range covered by the input data and the fixed abscissa range defined by set xrange.

If too few points are available to apply the requested smoothing operation an error message is produced.

The smooth options have no effect on function plots. Only smooth path is possible in polar coordinate mode.

Smoothing in 3D plots (splot) is currently limited to generating a natural cubic spline to pass through a set of
3D points. In the general case the splines are generated along a trajectory (smooth path). For a 2D projection
of 3D data smooth csplines acts as it does in 2D. Either keyword is accepted in an splot command.

splot $DATA using 1:2:3 smooth path with lines

Acsplines The smooth acsplines option approximates the data with a natural smoothing spline. After the
data are made monotonic in x (see smooth unique (p. 164)), a curve is piecewise constructed from segments
of cubic polynomials whose coefficients are found by fitting to the individual data points weighted by the value,
if any, given in the third column of the using spec. The default is equivalent to

plot 'data-file' using 1:2:(1.0) smooth acsplines

Qualitatively, the absolute magnitude of the weights determines the number of segments used to construct the
curve. If the weights are large, the effect of each datum is large and the curve approaches that produced by
connecting consecutive points with natural cubic splines. If the weights are small, the curve is composed of
fewer segments and thus is smoother; the limiting case is the single segment produced by a weighted linear
least squares fit to all the data. The smoothing weight can be expressed in terms of errors as a statistical weight
for a point divided by a "smoothing factor" for the curve so that (standard) errors in the file can be used as
smoothing weights.

Example:
sw(x,S)=1/(x*x*S)
plot 'data_file' using 1:2:(sw($3,100)) smooth acsplines
splot 'data_file' using 1:2:3:(sw($4,100)) smooth acsplines

splot ... smooth acsplines with lines fits splines to the x, y, and z coordinates of successive data points. Unlike
the 2D case, the points are not sorted first so it is possible to fit splines to a trajectory containing loops. Caution:
In the general 3D case there are many more spline terms fitted, so the weight value must be larger to achieve
a comparable effect. Also note that fractional path length is used as the implicit control variable and therefore
the intervals being weighted do not match the projections onto a single axis.

Bezier The smooth bezier option approximates the data with a Bezier curve of degree n (the number of data
points) that connects the endpoints.

164 gnuplot 6.1

Bins smooth bins is the same as bins. See bins (p. 158).

Csplines The smooth csplines option connects consecutive points by natural cubic splines after rendering
the data monotonic on x (see smooth unique (p. 164)). The smoothed curve always passes through the data
points, so closely-spaced points may generate local bumps and excursions in the smoothed curve.

splot ... smooth csplines with lines fits splines to the x, y, and z coordinates of successive data points. Unlike
2D csplines, the points are not sorted first so it is possible to fit splines to a trajectory containing loops. In the
general case three separate sets of spline coefficients are generated, each treating one coordinate x, y, or z as
a function of a shared implicit trajectory path parameter. This is equivalent to the 2D plot ... smooth path
option.

In the special case that the curve lies in the xz, yz, or xy plane then only a single set of spline coefficients is
generated. This allows you to generate a stack of smoothed curves in 3D where each one replicates the spline
fit you would have obtained from a 2D plot of the coordinates in projection.

Mcsplines The smooth mcsplines option connects consecutive points by cubic splines constrained such that
the smoothed function preserves the monotonicity and convexity of the original data points. This reduces the
effect of outliers. FN Fritsch & RE Carlson (1980) "Monotone Piecewise Cubic Interpolation", SIAM Journal
on Numerical Analysis 17: 238–246.

Path

smooth path with filledcurves closed
smooth path with lines

original points

The smooth path option generates cubic splines to fit
points in the order they are presented in the input data;
i.e. they are not first sorted on x. This generates a smooth
spline through a closed curve or along a trajectory that
contains loops. This smoothing mode is supported for
both 2D and 3D plot commands. A separate curve is
created for each set of points in the input file, where a
blank line separates the sets. Plotting smooth path with
filledcurves closed will guarantee that each set of points
creates a closed curve. Plotting smooth path with lines
will generate a closed curve if the first and last points in the set overlap, otherwise it will create an open-ended
smooth path. See smooth_path.dem

Sbezier The smooth sbezier option first renders the data monotonic (unique) and then applies the bezier
algorithm.

Unique The smooth unique option makes the data monotonic in x; points with the same x-value are replaced
by a single point having the average y-value. The resulting points are then connected by straight line segments.

Unwrap The smooth unwrap option modifies the input data so that any two successive points will not differ
by more than pi; a point whose y value is outside this range will be incremented or decremented by multi-
ples of 2pi until it falls within pi of the previous point. This operation is useful for making wrapped phase
measurements continuous over time.

http://www.gnuplot.info/demo_6.0/smooth_path.html

gnuplot 6.1 165

Frequency The smooth frequency option makes the data monotonic in x; points with the same x-value are
replaced by a single point having the summed y-values. To plot a histogram of the number of data values in
equal size bins, set the y-value to 1.0 so that the sum is a count of occurrences in that bin. This is done implicitly
if only a single column is provided. Example:

binwidth = <something> # set width of x values in each bin
bin(val) = binwidth * floor(val/binwidth)
plot "datafile" using (bin(column(1))):(1.0) smooth frequency
plot "datafile" using (bin(column(1))) smooth frequency # same result

See also smooth.dem

Fnormal The smooth fnormal option work just like the frequency option, but produces a normalized his-
togram. It makes the data monotonic in x and normalises the y-values so they all sum to 1. Points with the
same x-value are replaced by a single point containing the sumed y-values. To plot a histogram of the number
of data values in equal size bins, set the y-value to 1.0 so that the sum is a count of occurrences in that bin.
This is done implicitly if only a single column is provided. See also smooth.dem

Cumulative The smooth cumulative option makes the data monotonic in x; points with the same x-value
are replaced by a single point containing the cumulative sum of y-values of all data points with lower x-values
(i.e. to the left of the current data point). This can be used to obtain a cumulative distribution function from
data. See also smooth.dem

Cnormal The smooth cnormal option makes the data monotonic in x and normalises the y-values onto the
range [0:1]. Points with the same x-value are replaced by a single point containing the cumulative sum of
y-values of all data points with lower x-values (i.e. to the left of the current data point) divided by the total
sum of all y-values. This can be used to obtain a normalised cumulative distribution function from data (useful
when comparing sets of samples with differing numbers of members). See also smooth.dem

Kdensity The smooth kdensity option generates and plots a kernel density estimate using Gaussian kernels
for the distribution from which a set of values was drawn. Values are taken from the first data column, optional
weights are taken from the second column. A Gaussian is placed at the location of each point and the sum of all
these Gaussians is plotted as a function. To obtain a normalized histogram, each weight should be 1/number-
of-points.

Bandwidth: By default gnuplot calculates and uses the bandwidth which would be optimal for normally dis-
tributed data values.

default_bandwidth = sigma * (4/3N) ** (0.2)

This will usually be a very conservative, i.e. broad bandwidth. Alternatively, you can provide an explicit
bandwidth.

plot $DATA smooth kdensity bandwidth <value> with boxes

The bandwidth used in the previous plot is stored in GPVAL_KDENSITY_BANDWIDTH.

Period: For periodic data individual Gaussian components should be treated as repeating at intervals of one
period. One example is data measured as a function of angle, where the period is 2pi. Another example is data
indexed by day-of-year and measured over multiple years, where the period is 365. In such cases the period
should be provided in the plot command:

plot $ANGULAR_DAT smooth kdensity period 2*pi with lines

http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html

166 gnuplot 6.1

Special-filenames

There are a few filenames that have a special meaning: ’ ’, ’-’, ’+’ and ’++’.

The empty filename ’ ’ tells gnuplot to re-use the previous input file in the same plot command. So to plot two
columns from the same input file:

plot 'filename' using 1:2, '' using 1:3

The filename can also be reused over subsequent plot commands, however save then only records the name in
a comment.

The special filenames ’+’ and ’++’ are a mechanism to allow the full range of using specifiers and plot styles with
inline functions. Normally a function plot can only have a single y (or z) value associated with each sampled
point. The pseudo-file ’+’ treats the sampled points as column 1, and allows additional column values to be
specified via a using specification, just as for a true input file. The number of samples is controlled via set
samples or by giving an explicit sampling interval in the range specifier. Samples are generated over the range
given by set trange if it has been set, otherwise over the full range of set xrange.

Note: The use of trange is a change from some earlier gnuplot versions. It allows the sampling range to differ
from the x axis range.

plot '+' using ($1):(sin($1)):(sin($1)**2) with filledcurves

An independent sampling range can be provided immediately before the ’+’. As in normal function plots, a
name can be assigned to the independent variable. Here is an example where the sampling interval (1.5) is
given as part of the sampling range. Samples will be generated at -3, -1.5, 0, 1.5, ..., 24.

plot $MYDATA, [t=-3:25:1.5] '+' using (t):(f(t))

A sampling range that immediately follows the plot or splot command might be mistakenly parsed as an x-axis
range. To prevent this ambiguity you can either precede it with the sample keyword or provide a sampling
interval, possibly empty to use the default, as a third field of the sampling range. See the example of such
ambiguity in plot sampling (p. 172).

plot sample [beta=0:2*pi] '+' using (sin(beta)):(cos(beta)) with lines
plot [beta=0:2*pi:] '+' using (sin(beta)):(cos(beta)) with lines

The pseudo-file ’++’ returns 2 columns of data forming a regular grid of [u,v] coordinates with the number
of points along u controlled by set samples and the number of points along v controlled by set isosamples.
You must set urange and vrange before plotting ’++’. However the x and y ranges can be autoscaled or can be
explicitly set to different values than urange and vrange. Examples:

splot '++' using 1:2:(sin($1)*sin($2)) with pm3d
plot '++' using 1:2:(sin($1)*sin($2)) with image

The special filename ’-’ specifies that the data are inline; i.e., they follow the command. Only the data follow
the command; plot options like filters, titles, and line styles remain on the plot command line. This is similar
to << in unix shell script. The data are entered as though they were being read from a file, one data point per
record. The letter "e" at the start of the first column terminates data entry.

’-’ is intended for situations where it is useful to have data and commands together, e.g. when both are piped to
gnuplot from another application. Some of the demos, for example, might use this feature. While plot options
such as index and every are recognized, their use forces you to enter data that won’t be used. For all but the
simplest cases it is probably easier to first define a datablock and then read from it rather than from ’-’. See
datablocks (p. 63).

If you use ’-’with replot, you may need to enter the data more than once. See replot (p. 180), refresh (p. 179).
Here again it may be better to use a datablock.

A blank filename (’ ’) specifies that the previous filename should be reused. This can be useful with things like

gnuplot 6.1 167

plot 'a/very/long/filename' using 1:2, '' using 1:3, '' using 1:4

If you use both ’-’ and ’ ’ on the same plot command, you’ll need to provide two sets of inline data. It will not
reuse the first one.

Piped-data

On systems with a popen function, the datafile can be piped through a shell command by starting the file name
with a ’<’. For example,

pop(x) = 103*exp(-x/10)
plot "< awk '{print $1-1965, $2}' population.dat", pop(x)

would plot the same information as the first population example but with years since 1965 as the x axis. If
you want to execute this example, you have to delete all comments from the data file above or substitute the
following command for the first part of the command above (the part up to the comma):

plot "< awk '$0 !~ /^#/ {print $1-1965, $2}' population.dat"

While this approach is most flexible, it is possible to achieve simple filtering with the using keyword.

On systems with an fdopen() function, data can be read from an arbitrary file descriptor attached to either a file
or pipe. To read from file descriptor n use ’<&n’. This allows you to easily pipe in several data files in a single
call from a POSIX shell:

$ gnuplot -p -e "plot '<&3', '<&4'" 3<data-3 4<data-4
$./gnuplot 5< <(myprogram -with -options)
gnuplot> plot '<&5'

Using

The most common datafile modifier is using. It tells the program which columns of data in the input file are
to be plotted.

Syntax:
plot 'file' using <entry> {:<entry> {:<entry> ...}} {'format'}

Each <entry> may be a simple column number that selects the value from one field of the input file, a string
that matches a column label in the first line of a data set, an expression enclosed in parentheses, or a special
function not enclosed in parentheses such as xticlabels(2).

If the entry is an expression in parentheses, then the function column(N) may be used to indicate the value in
column N. That is, column(1) refers to the first item read, column(2) to the second, and so on. The special
symbols $1, $2, ... are shorthand for column(1), column(2) ...

The special symbol $# evaluates to the total number of columns in the current line of input, so column($#) or
stringcolumn($#) always returns the content of the final column even if the number of columns is unknown or
different lines in the file contain different numbers of columns.

The function valid(N) tests whether column N contains a valid number. It returns 0 if the column value is
missing, uninterpretable, or NaN. If each column of data in the input file contains a label in the first row rather
than a data value, this label can be used to identify the column on input and/or in the plot legend. The column()
function can be used to select an input column by label rather than by column number. For example, if the data
file contains

168 gnuplot 6.1

Height Weight Age
val1 val1 val1
...

then the following plot commands are all equivalent
plot 'datafile' using 3:1, '' using 3:2
plot 'datafile' using (column("Age")):(column(1)), \

'' using (column("Age")):(column(2))
plot 'datafile' using "Age":"Height", '' using "Age":"Weight"

The full string must match. Comparison is case-sensitive. To use column labels in the plot legend, use set key
autotitle columnhead or use function columnhead(N) when specifying an individual title.

In addition to the actual columns 1...N in the input data file, gnuplot presents data from several "pseudo-
columns" that hold bookkeeping information. E.g. $0 or column(0) returns the sequence number of this data
record within a dataset. Please see pseudocolumns (p. 169).

An empty<entry> will default to its order in the list of entries. For example, using ::4 is interpreted as using
1:2:4.

If the using list has only a single entry, that <entry> will be used for y and the data point number (pseudo-
column $0) is used for x; for example, "plot ’file’ using 1" is identical to "plot ’file’ using 0:1". If the using
list has two entries, these will be used for x and y. See set style (p. 258) and fit (p. 133) for details about
plotting styles that make use of data from additional columns of input.

Format If a format is specified, it is used to read in each datafile record using the C library ’scanf’ function.
Otherwise the record is interpreted as consisting of columns (fields) of data separated by whitespace (spaces
and/or tabs), but see datafile separator (p. 198).

’scanf’ itself accepts several numerical specifications but gnuplot requires all inputs to be double-precision
floating-point variables, so "%lf" is essentially the only permissible specifier. The format string must contain
at least one such input specifier and no more than seven of them. ’scanf’ expects to see white space – a blank,
tab ("\t"), newline ("\n"), or formfeed ("\f") – between numbers; anything else in the input stream must be
explicitly skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes rather than single-quotes.

Using_examples This creates a plot of the sum of the 2nd and 3rd data against the first: The format string
specifies comma- rather than space-separated columns. The same result could be achieved by specifying set
datafile separator comma.

plot 'file' using 1:($2+$3) '%lf,%lf,%lf'

In this example the data are read from the file "MyData" using a more complicated format:
plot 'MyData' using "%*lf%lf%*20[^\n]%lf"

The meaning of this format is:
%*lf ignore a number
%lf read a double-precision number (x by default)
%*20[^\n] ignore 20 non-newline characters
%lf read a double-precision number (y by default)

One trick is to use the ternary ?: operator to filter data:

gnuplot 6.1 169

plot 'file' using 1:($3>10 ? $2 : 1/0)

which plots the datum in column two against that in column one provided the datum in column three exceeds
ten. 1/0 is undefined; gnuplot quietly ignores undefined points, so unsuitable points are suppressed. Or you
can use the pre-defined variable NaN to achieve the same result.

In fact, you can use a constant expression for the column number, provided it doesn’t start with an opening
parenthesis; constructs like using 0+(complicated expression) can be used. The crucial point is that the
expression is evaluated once if it doesn’t start with a left parenthesis, or once for each data point read if it does.

If timeseries data are being used, the time can span multiple columns. The starting column should be specified.
Note that the spaces within the time must be included when calculating starting columns for other data. E.g.,
if the first element on a line is a time with an embedded space, the y value should be specified as column three.

It should be noted that (a) plot ’file’, (b) plot ’file’ using 1:2, and (c) plot ’file’ using ($1):($2) can be subtly
different. See missing (p. 197).

It is often possible to plot a file with lots of lines of garbage at the top simply by specifying

plot 'file' using 1:2

However, if you want to leave text in your data files, it is safer to put the comment character (#) in the first
column of the text lines.

Pseudocolumns Expressions in the using clause of a plot statement can refer to additional bookkeeping
values in addition to the actual data values contained in the input file. These are contained in "pseudocolumns".

column(0) The sequential order of each point within a data set.
The counter starts at 0, increments on each non-blank,
non-comment line, and is reset by two sequential blank
records. For data in non-uniform matrix format, column(0)
is the linear order of each matrix element.
The shorthand form $0 is available.

column(-1) This counter starts at 0, increments on a single blank line,
and is reset by two sequential blank lines.
This corresponds to the data line in array or grid data.
It can also be used to distinguish separate line segments
or polygons within a data set.

column(-2) Starts at 0 and increments on two sequential blank lines.
This is the index number of the current data set within a
file that contains multiple data sets. See `index`.

column($#) The special symbol $# evaluates to the total number of
columns available, so column($#) refers to the last
(rightmost) field in the current input line.
column($# - 1) would refer to the last-but-one column, etc.

Arrays When the data source being plotted is an array or array-valued function, the "columns" in a using
specification are interpreted as below. See arrays (p. 59) for more detail.

column 1 the array index
column 2 the real component of a numerical array entry

or the string value of a string array entry
column 3 the imaginary part of a numerical array entry

170 gnuplot 6.1

Key The layout of certain plot styles (column-stacked histograms, spider plots) is such that it would make no
sense to generate plot titles from a data column header. Also it would make no sense to generate axis tic labels
from the content of a data column (e.g. using 2:3:xticlabels(1)). These plots styles instead use the form using
2:3:key(1) to generate plot titles for the key from the text content of a data column, usually a first column of
row headers. See the example given for spiderplot (p. 120).

Xticlabels Axis tick labels can be generated via a string function, usually taking a data column as an ar-
gument. The simplest form uses the data column itself as a string. That is, xticlabels(N) is shorthand for
xticlabels(stringcolumn(N)). This example uses the contents of column 3 as x-axis tick labels.

plot 'datafile' using <xcol>:<ycol>:xticlabels(3) with <plotstyle>

Axis tick labels may be generated for any of the plot axes: x x2 y y2 z. The ticlabels(<labelcol>) specifiers
must come after all of the data coordinate specifiers in the using portion of the command. For each data point
which has a valid set of X,Y[,Z] coordinates, the string value given to xticlabels() is added to the list of xtic
labels at the same X coordinate as the point it belongs to. xticlabels() may be shortened to xtic() and so on.

Example:

splot "data" using 2:4:6:xtic(1):ytic(3):ztic(6)

In this example the x and y axis tic labels are taken from different columns than the x and y coordinate values.
The z axis tics, however, are generated from the z coordinate of the corresponding point.

Example:

plot "data" using 1:2:xtic($3 > 10. ? "A" : "B")

This example shows the use of a string-valued function to generate x-axis tick labels. Each point in the data
file generates a tick mark on x labeled either "A" or "B" depending on the value in column 3.

X2ticlabels See plot using xticlabels (p. 170).

Yticlabels See plot using xticlabels (p. 170).

Y2ticlabels See plot using xticlabels (p. 170).

Zticlabels See plot using xticlabels (p. 170).

Volatile

The volatile keyword in a plot command indicates that the data previously read from the input stream or file may
not be available for re-reading. This tells the program to use refresh rather than replot commands whenever
possible. See refresh (p. 179).

gnuplot 6.1 171

Functions

Built-in or user-defined functions can be displayed by the plot and splot commands in addition to, or instead
of, data read from a file. The requested function is evaluated by sampling at regular intervals spanning the
independent axis range[s]. See set samples (p. 257) and set isosamples (p. 212). Example:

approx(ang) = ang - ang**3 / (3*2)
plot sin(x) title "sin(x)", approx(x) title "approximation"

To set a default plot style for functions, see set style function (p. 262). For information on built-in functions,
see expressions functions (p. 44). For information on defining your own functions, see user-defined (p. 58).

Parametric

When in parametric mode (set parametric) mathematical expressions must be given in pairs for plot and in
triplets for splot.

Examples:
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric function must be fully specified before a data
file is given as a plot. In other words, the x parametric function (sin(t) above) and the y parametric function
(t**2 above) must not be interrupted with any modifiers or data functions; doing so will generate a syntax error
stating that the parametric function is not fully specified.

Other modifiers, such aswith and title, may be specified only after the parametric function has been completed:
plot sin(t),t**2 title 'Parametric example' with linespoints

See also Parametric Mode Demos.

Ranges

This section describes only the optional axis ranges that may appear as the very first items in a plot or splot
command. If present, these ranges override any range limits established by a previous set range statement.
For optional ranges elsewhere in a plot command that limit sampling of an individual plot component, see
sampling (p. 172).

Syntax:
[{<dummy-var>=}{{<min>}:{<max>}}]
[{{<min>}:{<max>}}]

The first form applies to the independent variable (xrange or trange, if in parametric mode). The second form
applies to dependent variables. <dummy-var> optionally establishes a new name for the independent variable.
(The default name may be changed with set dummy.)

In non-parametric mode, ranges must be given in the order
plot [<xrange>][<yrange>][<x2range>][<y2range>] ...

In parametric mode, ranges must be given in the order
plot [<trange>][<xrange>][<yrange>][<x2range>][<y2range>] ...

http://www.gnuplot.info/demo/param.html

172 gnuplot 6.1

The following plot command shows setting trange to [-pi:pi], xrange to [-1.3:1.3] and yrange to [-1:1] for
the duration of the graph:

plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2

* can be used to allow autoscaling of either ofmin andmax. Use an empty range [] as a placeholder if necessary.

Ranges specified on the plot or splot command line affect only that one graph; use the set xrange, set yrange,
etc., commands to change the default ranges for future graphs.

The use of on-the-fly range specifiers in a plot command may not yield the expected result for linked axes (see
set link (p. 222)).

For time data you must provide the range in quotes, using the same format used to read time from the datafile.
See set timefmt (p. 271).

Examples:

This uses the current ranges:
plot cos(x)

This sets the x range only:
plot [-10:30] sin(pi*x)/(pi*x)

This is the same, but uses t as the dummy-variable:
plot [t = -10 :30] sin(pi*t)/(pi*t)

This sets both the x and y ranges:
plot [-pi:pi] [-3:3] tan(x), 1/x

This sets only the y range:
plot [] [-2:sin(5)*-8] sin(x)**besj0(x)

This sets xmax and ymin only:
plot [:200] [-pi:] $mydata using 1:2

This sets the x range for a timeseries:
set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] 'timedata.dat'

Sampling

1D sampling (x or t axis)

By default, computed functions are sampled over the entire range of the plot as set by a prior set xrange
command, by an x-axis range specifier at the very start of the plot command, or by autoscaling the xrange to
span data seen in all the elements of this plot. Points generated by the pseudo-file "+" are sampled over the
current range of the t axis, which may or may not be the same as the range of the x axis.

Individual plot components can be assigned a more restricted sampling range.

Examples:

This establishes a total range on x running from 0 to 1000 and then plots data from a file and two functions
each spanning a portion of the total range:

gnuplot 6.1 173

set xrange [0:1000]
plot 'datafile', [0:200] func1(x), [200:500] func2(x)

This is similar except that the total range is established by the contents of the data file. In this case the sampled
functions may or may not be entirely contained in the plot:

set autoscale x
plot 'datafile', [0:200] func1(x), [200:500] func2(x)

The plot command below is ambiguous. The initial range [0:10] will be interpreted as applying to the entire
plot, overriding the previous xrange command, rather than applying solely to the sampling of the first function
as was probably the intent:

set xrange [0:50]
plot [0:10] f(x), [10:20] g(x), [20:30] h(x)

To remove the ambiguity in the previous example, either insert the keyword sample to indicate that [0:10] is
a sampling range rather than an axis range or add a sampling increment field (following a second colon) in the
range specifier. This works because a full range specifier [min:max:increment] cannot be mis-parsed as an axis
range. If the increment field is empty then the increment defaults to (min-max/samples), so all three variants
below produce the same result.

set samples 100
plot sample [0:10] f(x), [10:20] g(x), [20:30] h(x)
plot [0:10:0.1] f(x), [10:20] g(x), [20:30] h(x)
plot [0:10:] f(x), [10:20] g(x), [20:30] h(x)

This example shows one way of tracing out a helix in a 3D plot
set xrange [-2:2]; set yrange [-2:2]
set angle degrees
splot [phi=1:720:2] '+' using (cos(phi)):(sin(phi)):(phi)

2D sampling (u and v axes)

Computed functions or data generated for the pseudo-file ’++’ use samples generated along the u and v axes.
See special-filenames ++ (p. 166). 2D sampling can be used in either plot or splot commands.

Example of 2D sampling in a 2D plot command. These commands generated the plot shown for plotstyle with
vectors. See vectors (p. 122).

set urange [-2.0 : 2.0]
set vrange [-2.0 : 2.0]
plot '++' using ($1):($2):($2*0.4):(-$1*0.4) with vectors

Example of 2D sampling in a 3D splot command. These commands are similar to the ones used in sam-
pling.dem. Note that the two surfaces are sampled over u and v ranges smaller than the full x and y ranges of
the resulting plot.

set title "3D sampling range distinct from plot x/y range"
set xrange [1:100]
set yrange [1:100]
splot sample [u=30:70][v=0:50] '++' using 1:2:(u*v) lt 3, \

[u=40:80][v=30:60] '++' using (u):(v):(u*sqrt(v)) lt 4

The range specifiers for sampling on u and v can include an explicit sampling interval to control the number
and spacing of samples:

splot [u=30:70:1][v=0:50:5] '++' using 1:2:(func($1,$2))

174 gnuplot 6.1

For loops in plot command

If many similar files or functions are to be plotted together, it may be convenient to do so by iterating over a
shared plot command.

Syntax:
plot for [<variable> = <start> : <end> {:<increment>}]
plot for [<variable> in "string of words"]
plot for [<variable> in Array]

The scope of an iteration ends at the next comma or the end of the command, whichever comes first. An
exception to this is that definitions are grouped with the following plot item even if there is an intervening
comma. Note that iteration does not work for plots in parametric mode.

Example:
plot for [j=1:3] sin(j*x)

Example:
plot for [dataset in "apples bananas"] dataset."dat" title dataset

In this example iteration is used both to generate a file name and a corresponding title.

Example:
file(n) = sprintf("dataset_%d.dat",n)
splot for [i=1:10] file(i) title sprintf("dataset %d",i)

This example defines a string-valued function that generates file names, and plots ten such files together. The
iteration variable (’i’ in this example) is treated as an integer, and may be used more than once.

Example:
set key left
plot for [n=1:4] x**n sprintf("%d",n)

This example plots a family of functions.

Example:
list = "apple banana cabbage daikon eggplant"
item(n) = word(list,n)
plot for [i=1:words(list)] item[i].".dat" title item(i)
list = "new stuff"
replot

This example steps through a list and plots once per item. Because the items are retrieved dynamically, you
can change the list and then replot.

Example:
list = "apple banana cabbage daikon eggplant"
plot for [i in list] i.".dat" title i
list = "new stuff"
replot

This example does exactly the same thing as the previous example, but uses the string iterator form of the
command rather than an integer iterator.

If an iteration is to continue until all available data is consumed, use the symbol * instead of an integer<end>.
This can be used to process all columns in a line, all datasets (separated by 2 blank lines) in a file, or all files
matching a template.

Examples:

gnuplot 6.1 175

plot for [file in "A.dat B.dat"] for [column=2:*] file using 1:column
splot for [i=0:*] 'datafile' index i using 1:2:3 with lines
plot for [i=1:*] file=sprintf("File_%03d.dat",i) file using 2 title file

Caveat: You can nest iterations where one is open-ended, as in the first example above. However nesting an
open-ended iteration inside another open-ended iteration is probably not useful, since both will terminate at the
same time when no data is found. The program will issue a warning if this happens.

Title

By default each plot is listed in the key by the corresponding function or file name. You can give an explicit
plot title instead using the title option.

Syntax:
title <text> | notitle [<ignored text>]
title columnheader | title columnheader(N)

{at {beginning|end}} {{no}enhanced}

where<text> is a quoted string or an expression that evaluates to a string. The quotes will not be shown in the
key.

There is also an option that will interpret the first entry in a column of input data (i.e. the column header) as a
text field, and use it as the key title. See datastrings (p. 39). This can be made the default by specifying set
key autotitle columnhead.

The line title and sample can be omitted from the key by using the keyword notitle. A null title (title ’ ’) is
equivalent to notitle. If only the sample is wanted, use one or more blanks (title ’ ’). If notitle is followed by
a string this string is ignored.

If key autotitles is set (which is the default) and neither title nor notitle are specified the line title is the function
name or the file name as it appears on the plot command. If it is a file name, any datafile modifiers specified
will be included in the default title.

The layout of the key itself (position, title justification, etc.) can be controlled using set key (p. 213).

The at keyword allows you to place the plot title somewhere outside the auto-generated key box. The title can
be placed immediately before or after the line in the graph itself by using at {beginning|end}. This option
may be useful when plotting with lines but makes little sense for most other styles.

To place the plot title at an arbitrary location on the page, use the form at <x-position>,<y-position>. By
default the position is interpreted in screen coordinates; e.g. at 0.5, 0.5 is always the middle of the screen
regardless of plot axis scales or borders. The format of titles placed in this way is still affected by key options.
See set key (p. 213).

Examples:

This plots y=x with the title ’x’:
plot x

This plots x squared with title "x^2" and file "data.1" with title "measured data":
plot x**2 title "x^2", 'data.1' t "measured data"

Plot multiple columns of data, each of which contains its own title on the first line of the file. Place the titles
after the corresponding lines rather than in a separate key:

176 gnuplot 6.1

unset key
set offset 0, graph 0.1
plot for [i=1:4] 'data' using i with lines title columnhead at end

Create a single key area for two separate plots:
set key Left reverse
set multiplot layout 2,2
plot sin(x) with points pt 6 title "Left plot is sin(x)" at 0.5, 0.30
plot cos(x) with points pt 7 title "Right plot is cos(x)" at 0.5, 0.27
unset multiplot

With

Functions and data may be displayed in one of a large number of styles. The with keyword provides the means
of selection.

Syntax:
with <style> { {linestyle | ls <line_style>}

| {{linetype | lt <line_type>}
{linewidth | lw <line_width>}
{linecolor | lc <colorspec>}
{pointtype | pt <point_type>}
{pointsize | ps <point_size>}
{arrowstyle | as <arrowstyle_index>}
{fill | fs <fillstyle>} {fillcolor | fc <colorspec>}
{nohidden3d} {nocontours} {nosurface}
{palette}}

}

where <style> is one of
lines dots steps vectors yerrorlines
points impulses fsteps xerrorbar xyerrorbars
linespoints labels histeps xerrorlines xyerrorlines
financebars surface arrows yerrorbar parallelaxes

or
boxes boxplot ellipses histograms rgbalpha
boxerrorbars candlesticks filledcurves image rgbimage
boxxyerror circles fillsteps pm3d polygons
marks isosurface zerrorfill

or
table mask

The first group of styles have associated line, point, and text properties. The second group of styles also have
fill properties. See fillstyle (p. 261). Some styles have further sub-styles. See plotting styles (p. 90) for details
of each. Two special styles produce no immediate plot. See set table (p. 267) and with mask (p. 115). The
table style produces tabular output to a text file or data block. A plot component whose style is with mask
defines a set of polygonal regions that can be used to mask subsequent plot elements.

A default style may be chosen by set style function and set style data.

By default, each function and data file will use a different line type and point type, up to the maximum number
of available types. All terminal drivers support at least six different point types, and re-use them, in order, if

gnuplot 6.1 177

more are required. To see the complete set of line and point types available for the current terminal, type test
(p. 303).

If you wish to choose the line or point type for a single plot,<line_type> and<point_type>may be specified.
These are positive integer constants (or expressions) that specify the line type and point type to be used for the
plot. Use test to display the types available for your terminal.

You may also scale the line width and point size for a plot by using <line_width> and <point_size>, which
are specified relative to the default values for each terminal. The pointsize may also be altered globally — see
set pointsize (p. 253) for details. But note that both <point_size> as set here and as set by set pointsize
multiply the default point size; their effects are not cumulative. That is, set pointsize 2; plot x with points ps
3 will use points three times the default size, not six.

It is also possible to specify pointsize variable either as part of a line style or for an individual plot. In this
case one extra column of input is required, i.e. 3 columns for a 2D plot and 4 columns for a 3D splot. The size
of each individual point is determined by multiplying the global pointsize by the value read from the data file.

If you have defined specific line type/width and point type/size combinations with set style line, one of these
may be selected by setting <line_style> to the index of the desired style.

Both 2D and 3D plots (plot and splot commands) can use colors from a smooth palette set previously with
the command set palette. The color value corresponds to the z-value of the point itself or to a separate color
coordinate provided in an optional additional using column. Color values may be treated either as a fraction
of the palette range (palette frac) or as a coordinate value mapped onto the colorbox range (palette or palette
z). See colorspec (p. 65), set palette (p. 240), linetypes (p. 64).

The keyword nohidden3d applies only to plots made with the splot command. Normally the global option
set hidden3d applies to all plots in the graph. You can attach the nohidden3d option to any individual plots
that you want to exclude from the hidden3d processing. The individual elements other than surfaces (i.e. lines,
dots, labels, ...) of a plot marked nohidden3d will all be drawn, even if they would normally be obscured by
other plot elements.

Similarly, the keyword nocontours will turn off contouring for an individual plot even if the global property
set contour is active.

Similarly, the keyword nosurface will turn off the 3D surface for an individual plot even if the global property
set surface is active.

The keywords may be abbreviated as indicated.

Note that the linewidth, pointsize and palette options are not supported by all terminals.

Examples:

This plots sin(x) with impulses:
plot sin(x) with impulses

This plots x with points, x**2 with the default:
plot x w points, x**2

This plots tan(x) with the default function style, file "data.1" with lines:
plot tan(x), 'data.1' with l

This plots "leastsq.dat" with impulses:
plot 'leastsq.dat' w i

This plots the data file "population" with boxes:

178 gnuplot 6.1

plot 'population' with boxes

This plots "exper.dat"with errorbars and lines connecting the points (errorbars require three or four columns):
plot 'exper.dat' w lines, 'exper.dat' notitle w errorbars

Another way to plot "exper.dat" with errorlines (errorbars require three or four columns):
plot 'exper.dat' w errorlines

This plots sin(x) and cos(x) with linespoints, using the same line type but different point types:
plot sin(x) with linesp lt 1 pt 3, cos(x) with linesp lt 1 pt 4

This plots file "data" with points of type 3 and twice usual size:
plot 'data' with points pointtype 3 pointsize 2

This plots file "data" with variable pointsize read from column 4
plot 'data' using 1:2:4 with points pt 5 pointsize variable

This plots two data sets with lines differing only by weight:
plot 'd1' t "good" w l lt 2 lw 3, 'd2' t "bad" w l lt 2 lw 1

This plots filled curve of x*x and a color stripe:
plot x*x with filledcurve closed, 40 with filledcurve y=10

This plots x*x and a color box:
plot x*x, (x>=-5 && x<=5 ? 40 : 1/0) with filledcurve y=10 lt 8

This plots a surface with color lines:
splot x*x-y*y with line palette

This plots two color surfaces at different altitudes:
splot x*x-y*y with pm3d, x*x+y*y with pm3d at t

Print

Syntax:
print <expression> {, <expression>, ...}

The print command prints the value of one or more expressions. Output is to the screen unless it has been
redirected using the set print command. See expressions (p. 42). See also printerr (p. 179).

An <expression> may be any valid gnuplot expression, including numeric or string constants, a function re-
turning a number or string, an array, or the name of a variable. It is also possible to print a datablock. The
sprintf and gprintf functions can be used in conjunction with print for additional flexibility in formatting the
output.

You can use iteration within a print command to include multiple values on a single line of output.

Examples:
print 123 + 456
print sinh(pi/2)
print "rms of residuals (FIT_STDFIT) is ", FIT_STDFIT
print sprintf("rms of residuals is %.3f after fit", FIT_STDFIT)
print "Array A: ", A
print "Individual elements of array A: ", for [i=1:|A|] A[i]
print $DATA

gnuplot 6.1 179

Printerr

printerr is the same as print except that output is always sent to stderr even while redirection from a prior
set print command remains in effect. Use the warn command instead if you want the output to include the
current filename (or function block name) and line number.

Pwd

The pwd command prints the name of the working directory to the screen.

Note that if you wish to store the current directory into a string variable or use it in string expressions, then you
can use variable GPVAL_PWD, see show variables all (p. 293).

Quit

quit is a synonym for the exit command. See exit (p. 132).

Raise

Syntax:
raise {plot_window_id}
lower {plot_window_id}

The raise and lower commands function for only a few terminal types and may depend also on your window
manager and display preference settings.

set term wxt 123 # create first plot window
plot $FOO
lower # lower the only plot window that exists so far
set term wxt 456 # create 2nd plot window may occlude the first one
plot $BAZ
raise 123 # raise first plot window

These commands are known to be unreliable.

Refresh

The refresh command is similar to replot, with two major differences. refresh reformats and redraws the
current plot using the data already read in. This means that you can use refresh for plots with inline data
(pseudo-device ’-’) and for plots from datafiles whose contents are volatile. You cannot use the refresh com-
mand to add new data to an existing plot.

Mousing operations, in particular zoom and unzoom, will use refresh rather than replot if appropriate.
Example:

plot 'datafile' volatile with lines, '-' with labels
100 200 "Special point"
e

180 gnuplot 6.1

Various mousing operations go here
set title "Zoomed in view"
set term post
set output 'zoom.ps'
refresh

Remultiplot

remultiplot replays a sequence of commands that were previously stored into the datablock named
$GPVAL_LAST_MULTIPLOT during generation of the previous multiplot. See new multiplots (p. 31).

remultiplot is invoked implicitly from replot if the immediately preceding plot command was part of a com-
pleted multiplot.

Replot

The replot command without arguments repeats the last plot or splot command. This can be useful for viewing
a plot with different set options, or when generating the same plot for several devices.

Arguments specified after a replot command will be added onto the last plot or splot command (with an
implied ’,’ separator) before it is repeated. replot accepts the same arguments as the plot and splot commands
except that ranges cannot be specified. Thus you can use replot to plot a function against the second axes if
the previous command was plot but not if it was splot.

Note:
plot '-' ; ... ; replot

is not recommended, because it will require that you type in the data all over again. In most cases you can use
the refresh command instead, which will redraw the plot using the data previously read in.

See also command-line-editing (p. 37) for ways to edit the last plot (p. 148) (splot (p. 293)) command.

See also show plot (p. 293) to show the whole current plotting command, and the possibility to copy it into the
history (p. 144).

In previous gnuplot versions, a complete multiplot could not be redrawn. The replot command reproduced
only the final component plot of the full set. In gnuplot version 6 the commands used to generate a multiplot
are stored into a datablock $GPVAL_LAST_MULTIPLOT. They can be replayed to regenerate the entire
multiplot using the new command remultiplot.

If the previously drawn plot was part of a multiplot, the replot command is now automatically treated as
remultiplot. Several caveats apply. See new multiplots (p. 31), remultiplot (p. 180).

Reread

[DEPRECATED in version 5.4]

This command is deprecated in favor of explicit iteration. See iterate (p. 63). The reread command causes
execution from the current gnuplot input file, as specified by a load command, to immediately restart from the
beginning of the file. This essentially implements an endless loop of commands from the beginning of the file
to the reread command. reread has no effect when reading commands from stdin.

gnuplot 6.1 181

Reset
reset {bind | errors | session}

The reset command causes all graph-related options that can be set with the set command to return to their
default values. This command can be used to restore the default settings after executing a loaded command
file, or to return to a defined state after lots of settings have been changed.

The following are not affected by reset:
`set term` `set output` `set loadpath` `set linetype` `set fit`
`set encoding` `set decimalsign` `set locale` `set psdir`
`set overflow` `set multiplot` `set minussign` `set micro`

Note that reset does not necessarily return settings to the state they were in at program entry, because the
default values may have been altered by commands in the initialization files gnuplotrc, $HOME/.gnuplot, or
$XDG_CONFIG_HOME/gnuplot/gnuplotrc. However, these commands can be re-executed by using the vari-
ant command reset session.

reset session deletes any user-defined variables and functions, restores default settings, and then
re-executes the system-wide gnuplotrc initialization file and any private $HOME/.gnuplot or
$XDG_CONFIG_HOME/gnuplot/gnuplotrc preferences file. See initialization (p. 82).

reset errors clears only the error state variables GPVAL_ERRNO and GPVAL_ERRMSG.

reset bind restores all hotkey bindings to their default state.

Return

Syntax:
return <expression>

The return command acts the same way as the exit and quit commands in that it terminates execution of the
current code block or input stream. The return value is meaningful only in the context of executing code in a
function block. See function blocks (p. 142).

Example:
function $myfun << EOF
local result = 0
if (error-condition) { return -1 }
... body of function ...
return result
EOF

Save

Syntax:
save {functions | variables | terminal | set | fit | datablocks | marks}

'<filename>' {append}

save changes '<filename>' {append}

182 gnuplot 6.1

If no option is specified, gnuplot saves functions, user variables, set options and the most recent plot or splot
command. It does not save the content of datablocks. The current status of set term and set output is written
as a comment. The saved file contains a series of gnuplot commands in plain text that can be used as input to
the load command.

save changes "savefile.gp" writes out only those functions, variables, and settings that are different from the
program state at the start of the gnuplot session. This makes for a much shorter output file that should still
be sufficient to allow reset session; load "savefile.gp" to recreate the current plot and program state. This
command is not supported on all systems; it may not be available in your copy of gnuplot.

save terminalwill write out just the terminal status, without the comment marker in front of it. This is mainly
useful for switching the terminal setting for a short while, and getting back to the previously set terminal,
afterwards, by loading the saved terminal status. Note that for a single gnuplot session you may rather use the
other method of saving and restoring current terminal by the commands set term push and set term pop, see
set term (p. 268).

save variables writes all user variables but not datablocks, not marks, and not internal variables GPVAL_*
GPFUN_* MOUSE_* ARG*.

save fit saves only the variables used in the most recent fit command. The saved file may be used as a parameter
file to initialize future fit commands using the via keyword.

save marks saves only mark definitions and associated mark data.

The filename must be enclosed in quotes.

The special filename "-" may be used to save commands to standard output. On systems which support a
popen function (Unix), the output of save can be piped through an external program by starting the file name
with a ’|’. This provides a consistent interface to gnuplot’s internal settings to programs which communicate
with gnuplot through a pipe. Please see help for batch/interactive (p. 36) for more details.

Examples:

save 'work.gnu'
save functions 'func.dat'
save var 'state.dat'; save datablocks 'state.dat' append
save set 'options.dat'
save term 'myterm.gnu'
save '-'
save '|grep title >t.gp'

Set-show

The set command can be used to set lots of options. No new graph is drawn, however, until a plot, splot, or
replot command is given.

For most options the corresponding show command reports the current setting. A few show commands like
show palette and show colornames are documented separately.

Options changed using set can be returned to the default state by giving the corresponding unset command.
See also the reset (p. 181) command, which returns all settable parameters to default values.

The set and unset commands may optionally contain an iteration clause. See plot for (p. 174).

gnuplot 6.1 183

Angles

By default, gnuplot assumes the independent variable in polar graphs is in units of radians. If set angles
degrees is specified before set polar, then the default range is [0:360] and the independent variable has units
of degrees. This is particularly useful for plots of data files. The angle setting also applies to 3D mapping as
set via the set mapping command.

Syntax:
set angles {degrees | radians}
show angles

The angle specified in set grid polar is also read and displayed in the units specified by set angles.

set angles also affects the arguments of the machine-defined functions sin(x), cos(x) and tan(x), and the outputs
of asin(x), acos(x), atan(x), atan2(x), and arg(x). It has no effect on the arguments of hyperbolic functions or
Bessel functions. However, the output arguments of inverse hyperbolic functions of complex arguments are
affected; if these functions are used, set angles radians must be in effect to maintain consistency between
input and output arguments.

x={1.0,0.1}
set angles radians
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {1.0, 0.1}

but
set angles degrees
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {57.29578, 5.729578}

See also poldat.dem: polar plot using set angles demo.

Arrow

Arbitrary arrows can be placed on a plot using the set arrow command.

Syntax:
set arrow {<tag>} from <position> to <position>
set arrow {<tag>} from <position> rto <position>
set arrow {<tag>} from <position> length <coord> angle <ang>
set arrow <tag> arrowstyle | as <arrow_style>
set arrow <tag> {nohead | head | backhead | heads}

{size <headlength>,<headangle>{,<backangle>}} {fixed}
{filled | empty | nofilled | noborder}
{front | back}
{linestyle | ls <line_style>}
{linetype | lt <line_type>}
{linewidth | lw <line_width>}
{linecolor | lc <colorspec>}
{dashtype | dt <dashtype>}

unset arrow {<tag>}
show arrow {<tag>}

http://www.gnuplot.info/demo/poldat.html

184 gnuplot 6.1

<tag> is an integer that identifies the arrow. If no tag is given, the lowest unused tag value is assigned automat-
ically. The tag can be used to delete or change a specific arrow. To change any attribute of an existing arrow,
use set arrow with the appropriate tag and specify the attributes to be changed.

The position of the first end point of the arrow is always specified by "from". The other end point can be
specified using any of three different mechanisms. The <position>s are specified by either x,y or x,y,z, and
may be preceded by first, second, graph, screen, or character to select the coordinate system. Unspecified
coordinates default to 0. See coordinates (p. 38) for details. A coordinate system specifier does not carry over
from the first endpoint description the second.

1) "to <position>" specifies the absolute coordinates of the other end.

2) "rto<position>" specifies an offset to the "from" position. For linear axes, graph and screen coordinates,
the distance between the start and the end point corresponds to the given relative coordinate. For logarithmic
axes, the relative given coordinate corresponds to the factor of the coordinate between start and end point.
Thus, a negative relative value or zero are not allowed for logarithmic axes.

3) "length <coordinate> angle <angle>" specifies the orientation of the arrow in the plane of the graph.
Again any of the coordinate systems can be used to specify the length. The angle is always in degrees.

Other characteristics of the arrow can either be specified as a pre-defined arrow style or by providing them in
set arrow command. For a detailed explanation of arrow characteristics, see arrowstyle (p. 259).

Examples:

To set an arrow pointing from the origin to (1,2) with user-defined linestyle 5, use:
set arrow to 1,2 ls 5

To set an arrow from bottom left of plotting area to (-5,5,3), and tag the arrow number 3, use:
set arrow 3 from graph 0,0 to -5,5,3

To change the preceding arrow to end at 1,1,1, without an arrow head and double its width, use:
set arrow 3 to 1,1,1 nohead lw 2

To draw a vertical line from the bottom to the top of the graph at x=3, use:
set arrow from 3, graph 0 to 3, graph 1 nohead

To draw a vertical arrow with T-shape ends, use:
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90

To draw an arrow relatively to the start point, where the relative distances are given in graph coordinates, use:
set arrow from 0,-5 rto graph 0.1,0.1

To draw an arrow with relative end point in logarithmic x axis, use:
set logscale x
set arrow from 100,-5 rto 10,10

This draws an arrow from 100,-5 to 1000,5. For the logarithmic x axis, the relative coordinate 10means "factor
10" while for the linear y axis, the relative coordinate 10 means "difference 10".

To delete arrow number 2, use:
unset arrow 2

To delete all arrows, use:
unset arrow

To show all arrows (in tag order), use:
show arrow

arrows demos.

http://www.gnuplot.info/demo/arrowstyle.html

gnuplot 6.1 185

Autoscale

Autoscaling may be set individually on the x, y or z axis or globally on all axes. The default is to autoscale all
axes. If you want to autoscale based on a subset of the plots in the figure, you can mark the ones to be omitted
with the flag noautoscale in the plot command. See datafile (p. 154).

Syntax:
set autoscale {<axis>{|min|max|fixmin|fixmax|fix} | fix | keepfix}
set autoscale noextend
unset autoscale {<axis>}
show autoscale

where<axis> is x, y, z, cb, x2, y2, xy, or paxis<p>. Appendingmin ormax to the axis name tells gnuplot
to autoscale only the minimum or maximum of that axis.

If no axis name is given, all axes are autoscaled.

Autoscaling the independent axes (x for plot and x,y for splot) adjusts the axis range to match the data being
plotted. If the plot contains only functions (no input data), autoscaling these axes has no effect.

Autoscaling the dependent axis (y for a plot and z for splot) adjusts the axis range to match the data or function
being plotted.

Adjustment of the axis range includes extending it to the next tic mark; i.e. unless the extreme data coordinate
exactly matches a tic mark, there will be some blank space between the data and the plot border. Addition of
this extra space can be suppressed by noextend. It can be further increased by the command set offset. Please
see set xrange (p. 280) and set offsets (p. 237) for additional information.

The behavior of autoscaling remains consistent in parametric mode, (see set parametric (p. 246)). However,
there are more dependent variables and hence more control over x, y, and z axis scales. In parametric mode, the
independent or dummy variable is t for plots and u,v for splots. autoscale in parametric mode, then, controls
all ranges (t, u, v, x, y, and z) and allows x, y, and z to be fully autoscaled.

When tics are displayed on second axes but no plot has been specified for those axes, x2range and y2range are
inherited from xrange and yrange. This is done before applying offsets or autoextending the ranges to a whole
number of tics, which can cause unexpected results. To prevent this you can explicitly link the secondary axis
range to the primary axis range. See set link (p. 222).

Noextend
set autoscale noextend

By default autoscaling sets the axis range limits to the nearest tic label position that includes all the plot data.
Keywords fixmin, fixmax, fix or noextend tell gnuplot to disable extension of the axis range to the next tic
mark position. In this case the axis range limit exactly matches the coordinate of the most extreme data point.
set autoscale noextend is a synonym for set autoscale fix. Range extension for a single axis can be disabled
by appending the noextend keyword to the corresponding range command, e.g.

set yrange [0:*] noextend

set autoscale keepfix autoscales all axes while leaving the fix settings unchanged.

Examples

Examples:

This sets autoscaling of the y axis (other axes are not affected):

186 gnuplot 6.1

set autoscale y

This sets autoscaling only for the minimum of the y axis (the maximum of the y axis and the other axes are not
affected):

set autoscale ymin

This disables extension of the x2 axis tics to the next tic mark, thus keeping the exact range as found in the
plotted data and functions:

set autoscale x2fixmin
set autoscale x2fixmax

This sets autoscaling of the x and y axes:
set autoscale xy

This sets autoscaling of the x, y, z, x2 and y2 axes:
set autoscale

This disables autoscaling of the x, y, z, x2 and y2 axes:
unset autoscale

This disables autoscaling of the z axis only:
unset autoscale z

Polar mode

When in polar mode (set polar), the xrange and the yrange may be left in autoscale mode. If set rrange is used
to limit the extent of the polar axis, then xrange and yrange will adjust to match this automatically. However,
explicit xrange and yrange commands can later be used to make further adjustments. See set rrange (p. 256).

See also polar demos.

Bind

show bind shows the current state of all hotkey bindings. See bind (p. 78).

Bmargin

The command set bmargin sets the size of the bottom margin. Please see set margin (p. 224) for details.

Border

The set border and unset border commands control the display of the graph borders for the plot and splot
commands. Note that the borders do not necessarily coincide with the axes; with plot they often do, but with
splot they usually do not.

Syntax:

http://www.gnuplot.info/demo/poldat.html

gnuplot 6.1 187

set border {<integer>}
{front | back | behind}
{linestyle | ls <line_style>}
{linetype | lt <line_type>} {linewidth | lw <line_width>}
{linecolor | lc <colorspec>} {dashtype | dt <dashtype>}
{polar}

unset border
show border

With a splot displayed in an arbitrary orientation, like set view 56,103, the four corners of the x-y plane can be
referred to as "front", "back", "left" and "right". A similar set of four corners exist for the top surface, of
course. Thus the border connecting, say, the back and right corners of the x-y plane is the "bottom right back"
border, and the border connecting the top and bottom front corners is the "front vertical". (This nomenclature
is defined solely to allow the reader to figure out the table that follows.)

The borders are encoded in a 12-bit integer: the four low bits control the border for plot and the sides of the
base for splot; the next four bits control the verticals in splot; the four high bits control the edges on top of an
splot. The border settings is thus the sum of the appropriate entries from the following table:

Graph Border Encoding
Bit plot splot
1 bottom bottom left front
2 left bottom left back
4 top bottom right front
8 right bottom right back
16 no effect left vertical
32 no effect back vertical
64 no effect right vertical
128 no effect front vertical
256 no effect top left back
512 no effect top right back
1024 no effect top left front
2048 no effect top right front
4096 polar no effect

The default setting is 31, which is all four sides for plot, and base and z axis for splot.

Separate from the four vertical lines in a 3D border, the splot command by default draws a vertical line each
corner of a surface to the base plane of the plot. These verticals are not controlled by set border. Instead use
set/unset cornerpoles.

In 2D plots the border is normally drawn on top of all plots elements (front). If you want the border to be
drawn behind the plot elements, use set border back.

In hidden3d plots the lines making up the border are normally subject to the same hidden3d processing as the
plot elements. set border behind will override this default.

Using the optional<linestyle>,<linetype>,<linewidth>,<linecolor>, and<dashtype> specifiers, the way
the border lines are drawn can be influenced (limited by what the current terminal driver supports). Besides
the border itself, this line style is used for the tics, independent of whether they are plotted on the border or on
the axes (see set xtics (p. 282)).

For plot, tics may be drawn on edges other than bottom and left by enabling the second axes – see set xtics
(p. 282) for details.

188 gnuplot 6.1

If a splot draws only on the base, as is the case with "unset surface; set contour base", then the verticals
and the top are not drawn even if they are specified.

The set grid options ’back’, ’front’ and ’layerdefault’ also control the order in which the border lines are drawn
with respect to the output of the plotted data.

The polar keyword enables a circular border for polar plots.

Examples:

Draw default borders:
set border

Draw only the left and bottom (plot) or both front and back bottom left (splot) borders:
set border 3

Draw a complete box around a splot:
set border 4095

Draw a topless box around a splot, omitting the front vertical:
set border 127+256+512 # or set border 1023-128

Draw only the top and right borders for a plot and label them as axes:
unset xtics; unset ytics; set x2tics; set y2tics; set border 12

Boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes, boxerrorbars, boxplot,
candlesticks and histograms styles.

Syntax:
set boxwidth {<width>} {absolute|relative}
show boxwidth

By default, adjacent boxes are extended in width until they touch each other. A different default width may be
specified using the set boxwidth command. Relative widths are interpreted as being a fraction of this default
width.

An explicit value for the boxwidth is interpreted as being a number of units along the current x axis (absolute)
unless the modifier relative is given. If the x axis is a log-scale (see set log (p. 223)) then the value of boxwidth
is truly "absolute" only at x=1; this physical width is maintained everywhere along the axis (i.e. the boxes do
not become narrower the value of x increases). If the range spanned by a log scale x axis is far from x=1, some
experimentation may be required to find a useful value of boxwidth.

The default is superseded by explicit width information taken from an extra data column in styles boxes or
boxerrorbars. See style boxes (p. 91) and style boxerrorbars (p. 91) for more details.

To set the box width to automatic use the command
set boxwidth

To set the box width to half of the automatic size use
set boxwidth 0.5 relative

To set the box width to an absolute value of 2 use
set boxwidth 2 absolute

gnuplot 6.1 189

Boxdepth
set boxdepth {<y extent>} | square

The set boxdepth command affects only 3D plots created by splot with boxes. It sets the extent of each box
along the y axis, i.e. its thickness. set boxdepth square will try to choose a y extent that gives the appearance
of a square cross section independent of the axis scales on x and y.

Chi_shapes
set chi_shapes fraction <value>
unset chi_shapes

The concave hull filter creates χ-shapes defined by a characteristic length chi_length. If no chi_length variable
has been set, it chooses a value equal to a fraction of the longest edge in the bounding polygon (the convex
hull). The fraction defaults to 0.6 but can be changed using this command. Choosing a value of 1.0 will reduce
the resulting hull to the convex hull. Smaller values will produce increasingly concave hulls. See concavehull
(p. 159). The unset chi_shapes command restores the fraction to 0.6 and undefines the chi_length variable.

Color

Gnuplot assigns each element of a plot or splot command a new set of line properties taken from a predefined
sequence. The default is to distinguish successive lines by a change in color. The alternative selected by set
monochrome uses a sequence of black lines distinguished by linewidth or dot/dash pattern. The set color
command exits this alternative monochrome mode and restores the previous set of default color lines. See set
monochrome (p. 226), set linetype (p. 221), and set colorsequence (p. 190).

Colormap

Syntax:
set colormap new <colormap-name>
set colormap <colormap-name> range [<min>:<max>]
show colormaps

set colormap new <name> creates a colormap array <name> and loads it from the current palette settings.
This saved colormap can be further manipulated as an array of 32-bit ARGB color values and used by name in
subsequent plots.

Here is an example that creates a palette running from dark red to white, saves it to a colormap array named
’Reds’, and makes all entries in the colormap partially transparent. This named colormap is then used later to
color a pm3d surface. Note that the alpha channel value in a named colormap follows the convention for ARGB
line properties; i.e 0 is opaque, 0xff is fully transparent.

set palette defined (0 "dark-red", 1 "white")
set colormap new Reds
do for [i=1:|Reds|] { Reds[i] = Reds[i] | 0x3F000000 }
splot func(x,y) with pm3d fillcolor palette Reds

The mapping of z values onto the colormap can be tuned by setting minimum and maximum z values that
correspond to the end points. For example

set colormap Reds range [0:10]

If no range is set, or if min and max are the same, then the mapping uses the current limits of cbrange. See set
cbrange (p. 291).

A colormap can be used to gradient-fill a rectangular area. See pixmap colormap (p. 247).

190 gnuplot 6.1

Colorsequence

Syntax:
set colorsequence {default|classic|podo}

set colorsequence default selects a terminal-independent repeating sequence of eight colors. See set linetype
(p. 221), colors (p. 64).

set colorsequence classic lets each separate terminal type provide its own sequence of line colors. The number
provided varies from 4 to more than 100, but most start with red/green/blue/magenta/cyan/yellow. This was
the default behaviour prior to version 5.

set colorsequence podo selects eight colors drawn from a set recommended byWong (2011) [Nature Methods
8:441] as being easily distinguished by color-blind viewers with either protanopia or deuteranopia.

In each case you can further customize the length of the sequence and the colors used. See set linetype (p. 221),
colors (p. 64).

Clabel

This command has been deprecated. Use set cntrlabel instead. set clabel "format" is replaced by set cntr-
label format "format". unset clabel is replaced by set cntrlabel onecolor.

Clip

Syntax:
set clip {points|one|two|radial}
unset clip {points|one|two|radial}
show clip

Default state:
unset clip points
set clip one
unset clip two
unset clip radial

Data points whose center lies inside the plot boundaries are normally drawn even if the finite size of the point
symbol causes it to extend past a boundary line. set clip points causes such points to be clipped (i.e. not drawn)
even though the point center is inside the boundaries of a 2D plot. Data points whose center lies outside the
plot boundaries are never drawn.

unset clip causes a line segment in a plot not to be drawn if either end of that segment lies outside the plot
boundaries (i.e. xrange and yrange).

set clip one causes gnuplot to draw the in-range portion of line segments with one endpoint in range and one
endpoint out of range. set clip two causes gnuplot to draw the in-range portion of line segments with both
endpoints out of range. Line segments that lie entirely outside the plot boundaries are never drawn.

set clip radial affects plotting only in polar mode. It clips lines against the radial bound established by set
rrange [0:MAX]. This criteria is applied in conjunction with set clip {one|two}. I.e. the portion of a line
between two points with R > RMAX that passes through the circle R = RMAX is drawn only if both clip two
and clip radial are set.

gnuplot 6.1 191

Notes:

* set clip affects only points and lines produced by plot styles lines, linespoints, points, arrows, and vectors.

* Clipping of colored quadrangles drawn for pm3d surfaces and other solid objects is controlled set pm3d
clipping. The default is smooth clipping against the current zrange.

* Object clipping is controlled by the clip or noclip property of the individual object.

* In the current version of gnuplot, "plot with vectors" in polar mode does not test or clip against the maximum
radius.

Cntrlabel

Syntax:
set cntrlabel {format "format"} {font "font"}
set cntrlabel {start <int>} {interval <int>}
set cntrlabel onecolor

set cntrlabel controls the labeling of contours, either in the key (default) or on the plot itself in the case of
splot ... with labels. In the latter case labels are placed along each contour line according to the pointinterval
or pointnumber property of the label descriptor. By default a label is placed on the 5th line segment making
up the contour line and repeated every 20th segment. These defaults are equivalent to

set cntrlabel start 5 interval 20

They can be changed either via the set cntrlabel command or by specifying the interval in the splot command
itself

set contours; splot $FOO with labels point pointinterval -1

Setting the interval to a negative value means that the label appear only once per contour line. However if set
samples or set isosamples is large then many contour lines may be created, each with a single label.

A contour label is placed in the plot key for each linetype used. By default each contour level is given its own
linetype, so a separate label appears for each. The command set cntrlabel onecolor causes all contours to
be drawn using the same linetype, so only one label appears in the plot key. This command replaces an older
command unset clabel.

Cntrparam

set cntrparam controls the generation of contours and their smoothness for a contour plot. show contour
displays current settings of cntrparam as well as contour.

Syntax:
set cntrparam { { linear

| cubicspline
| bspline
| points <n>
| order <n>
| levels { <n>

| auto {<n>}
| discrete <z1> {,<z2>{,<z3>...}}
| incremental <start>, <incr> {,<end>}

}

192 gnuplot 6.1

{{un}sorted}
{firstlinetype N}

}
}

show contour

This command has two functions. First, it sets the values of z for which contours are to be determined. The
number of contour levels <n> should be an integral constant expression. <z1>, <z2> ... are real-valued
expressions. Second, it controls the appearance of the individual contour lines.

Keywords controlling the smoothness of contour lines:

linear, cubicspline, bspline — Controls type of approximation or interpolation. If linear, then straight line
segments connect points of equal z magnitude. If cubicspline, then piecewise-linear contours are interpolated
between the same equal z points to form somewhat smoother contours, but which may undulate. If bspline, a
guaranteed-smoother curve is drawn, which only approximates the position of the points of equal-z.

points — Eventually all drawings are done with piecewise-linear strokes. This number controls the number
of line segments used to approximate the bspline or cubicspline curve. Number of cubicspline or bspline
segments (strokes) = points * number of linear segments.

order — Order of the bspline approximation to be used. The bigger this order is, the smoother the resulting
contour. (Of course, higher order bspline curves will move further away from the original piecewise linear
data.) This option is relevant for bspline mode only. Allowed values are integers in the range from 2 (linear)
to 10.

Keywords controlling the selection of contour levels:

levels auto—This is the default. <n> specifies a nominal number of levels; the actual number will be adjusted
to give simple labels. If the surface is bounded by zmin and zmax, contours will be generated at integer multiples
of dz between zmin and zmax, where dz is 1, 2, or 5 times some power of ten (like the step between two tic
marks).

levels discrete—Contours will be generated at z =<z1>,<z2> ... as specified; the number of discrete levels
sets the number of contour levels. In discrete mode, any set cntrparam levels <n> are ignored.

levels incremental — Contours are generated at values of z beginning at <start> and increasing by
<increment>, until the number of contours is reached. <end> is used to determine the number of con-
tour levels, which will be changed by any subsequent set cntrparam levels <n>. If the z axis is logarithmic,
<increment> will be interpreted as a multiplicative factor, as it is for set ztics, and<end> should not be used.

Keywords controlling the assignment of linetype to contours:

By default the contours are generated in the reverse order specified (unsorted). Thus set cntrparam levels
increment 0, 10, 100 will create 11 contours levels starting with 100 and ending with 0. Adding the keyword
sorted re-orders the contours by increasing numerical value, which in this case would mean the first contour is
drawn at 0.

By default contours are drawn using successive linetypes starting with the next linetype after that used for the
corresponding surface. Thus splot x*y lt 5 would use lt 6 for the first contour generated. If hidden3dmode is
active then each surface uses two linetypes. In this case using default settings would cause the first contour to
use the same linetype as the hidden surface, which is undesirable. This can be avoided in either of two ways.
(1) Use set hidden3d offset N to change the linetype used for the hidden surface. A good choice would be
offset -1 since that will avoid all the contour linetypes. (2) Use the set cntrparam firstlinetype N option to
specify a block of linetypes used for contour lines independent of whatever was used for the surface. This is
particularly useful if you want to customize the set of contour linetypes. N <= 0 restores the default.

gnuplot 6.1 193

If the command set cntrparam is given without any arguments specified all options are reset to the default:

set cntrparam order 4 points 5
set cntrparam levels auto 5 unsorted
set cntrparam firstlinetype 0

Examples

Examples:

set cntrparam bspline
set cntrparam points 7
set cntrparam order 10

To select levels automatically, 5 if the level increment criteria are met:

set cntrparam levels auto 5

To specify discrete levels at .1, .37, and .9:

set cntrparam levels discrete .1,1/exp(1),.9

To specify levels from 0 to 4 with increment 1:

set cntrparam levels incremental 0,1,4

To set the number of levels to 10 (changing an incremental end or possibly the number of auto levels):

set cntrparam levels 10

To set the start and increment while retaining the number of levels:

set cntrparam levels incremental 100,50

To define and use a customized block of contour linetypes

set linetype 100 lc "red" dt '....'
do for [L=101:199] {

if (L%10 == 0) {
set linetype L lc "black" dt solid lw 2

} else {
set linetype L lc "gray" dt solid lw 1

}
}
set cntrparam firstlinetype 100
set cntrparam sorted levels incremental 0, 1, 100

See also set contour (p. 195) for control of where the contours are drawn, and set cntrlabel (p. 191) for
control of the format of the contour labels and linetypes.

See also contours demo (contours.dem)

and contours with user defined levels demo (discrete.dem).

http://www.gnuplot.info/demo/contours.html
http://www.gnuplot.info/demo/discrete.html

194 gnuplot 6.1

Color box

For plots that use palette coloring, in particular pm3d plots, the palette gradient is drawn in a color box next to
the plot unless it is switched off by unset colorbox.

set colorbox
set colorbox {

{ vertical | horizontal } {{no}invert}
{ default | bottom | user }
{ origin x, y }
{ size x, y }
{ front | back }
{ noborder | bdefault | border <linestyle> }

}
show colorbox
unset colorbox

The orientation of the color gradient is set by vertical or horizontal.

The color box position can be default or bottom or user. The bottom keyword is a convenience short cut
equivalent to

set colorbox horizontal user origin screen 0.1, 0.07 size 0.8, 0.03.

If the colorbox is placed underneath the plot, as it is with bottom, it may be useful to reserve additional space
for it: set bmargin screen 0.2.

origin x, y and size x, y are used to tailor the exact placement in user or bottom positioning. The x and y
values are interpreted as screen coordinates by default, and this is the only legal option for 3D plots. 2D plots,
including splot with set view map, allow any coordinate system.

back/front control whether the color box is draw before or after the plot.

border turns the border on (this is the default). noborder turns the border off. If an positive integer argument
is given after border, it is used as a line style tag which is used for drawing the border, e.g.:

set style line 2604 linetype -1 linewidth .4
set colorbox border 2604

will use line style 2604, a thin line with the default border color (-1) for drawing the border. bdefault (which
is the default) will use the default border line style for drawing the border of the color box.

The axis of the color box is called cb and it is controlled by means of the usual axes commands, i.e. set/un-
set/showwith target properties cbrange, [m]cbtics, format cb, grid [m]cb, cblabel, and perhaps even cbdata,
[no]cbdtics, [no]cbmtics.

set colorbox without any parameter switches the position to default. unset colorbox resets the default param-
eters for the colorbox and switches the colorbox off.

See also help for set pm3d (p. 248), set palette (p. 240), and set style line (p. 263).

Colornames

gnuplot 6.1 195

antiquewhite
aquamarine
beige
bisque
black
blue
brown4
brown
chartreuse
coral
cyan
dark-blue
dark-chartreuse
dark-cyan
dark-goldenrod
dark-gray
dark-green
dark-khaki
dark-magenta
dark-olivegreen
dark-orange
dark-pink
dark-plum
dark-red
dark-salmon
dark-spring-green
dark-turquoise
dark-violet
dark-yellow
forest-green
goldenrod
gold

gray0 (grey0)
gray10 (grey10)
gray20 (grey20)
gray30 (grey30)
gray40 (grey40)
gray50 (grey50)
gray60 (grey60)
gray70 (grey70)
gray80 (grey80)
gray90 (grey90)
gray100 (grey100)
gray (grey)
green
greenyellow
honeydew
khaki1
khaki
lemonchiffon
light-blue
light-coral
light-cyan
light-goldenrod
light-gray
light-green
light-magenta
light-pink
light-red
light-salmon
light-turquoise
magenta
medium-blue
mediumpurple3

midnight-blue
navy
olive
orange
orangered4
orange-red
orchid4
orchid
pink
plum
purple
red
royalblue
salmon
sandybrown
sea-green
seagreen
sienna1
sienna4
skyblue
slateblue
slategray
spring-green
steelblue
tan1
turquoise
violet
web-blue
web-green
white
yellow4
yellow

Gnuplot knows a limited number of color names. You
can use these to define the color range spanned by a pm3d
palette, to assign a named color to a particular linetype
or linestyle, or to define a gradient for the current color
palette. Use the command show colornames to list the
known color names together with their RGB component
definitions. Examples:

set style line 1 linecolor "sea-green"
set palette defined (0 "dark-red", 1 "white")
print sprintf("0x%06x", rgbcolor("dark-green"))

0x006400

Contour

set contour enables placement of contour lines on 3D surfaces. This option is available only for splot. It
requires grid data, e.g. a file in which all the points for a single y-isoline are listed, then all the points for the
next y-isoline, and so on. A single blank line (containing no characters other than blank spaces) separates one
y-isoline from the next. see grid_data (p. 298) for more details.

If the data is not already gridded, set dgrid3d can be used to first create and populate an appropriate grid.

Syntax:
set contour {base | surface | both}
unset contour
show contour

The three options specify where to draw the contours: base draws the contours on the grid base where the
x/ytics are placed, surface draws the contours on the surfaces themselves, and both draws the contours on both
the base and the surface. If no option is provided, the default is base.

See also set cntrparam (p. 191) for the parameters that affect the drawing of contours, and set cntrlabel
(p. 191) for control of labeling of the contours.

Note that this option places lines or labels without otherwise changing the appearance of the surface itself.
If you want to recolor the surface so that the areas bounded by contour lines are assigned distinct colors, use
instead the contourfill plot style. See contourfill (p. 97).

While set contour is in effect, splot with<style> will place the style elements (points, lines, impulses, labels,
etc) along the contour lines. with pm3d will produce a pm3d surface and also contour lines. If you want to
mix other plot elements, say labels read from a file, with the contours generated while set contour is active you
must append the keyword nocontours after that clause in the splot command.

The surface can be switched off (see unset surface (p. 267)) to give a contour-only graph. A 2D projection of
the contour lines and optional labels can be generated by

set view map
splot DATA with lines nosurface, DATA with labels

Older gnuplot versions used an alternative multi-step method to save the 3D contour lines into a file or datablock
and then plot them using a 2D plot command as shown below.

set contour
set table $datablock
splot DATA with lines nosurface
unset table
contour lines are now in $datablock, one contour per index
plot for [level=0:*] $datablock index level with lines

196 gnuplot 6.1

See also splot datafile (p. 294) and demos for contours (contours.dem)

and user defined contour levels (discrete.dem).

Cornerpoles

By default splot draws a vertical line from each corner of a 3D surface to the base plane. These vertical lines
can be suppressed using unset cornerpoles.

Contourfill

The 3D plot stylewith contourfill slices a pm3d surface into sections delimited by a set of planes perpendicular
to the z axis. The command set contourfill controls placement of these limiting planes and the colors assigned
to the individual sections.

Syntax:

set contourfill auto N # split zrange evenly into N slices
set contourfill ztics # slice at each z axis major tick
set contourfill cbtics # slice at each cb axis major tick
set contourfill {palette | firstlinetype N}

The default is set contourfill auto 5 palette, which splits the current z range into five equal slices (6 bounding
planes) and colors each slice of the surface with the palette-mapped color of its midpoint z value.

The options ztics or cbtics place split zrange by slicing at major ticks along that axis. For example to slice
specifically at z=2.5, z=7 and z=10 you could use the commands below.

set ztics add ("floor" 2.5, "boundary X" 7, "ceiling" 10)
set contourfill ztics

If you do not want to use palette coloring for the sections, you can choose any arbitrary range of successive
linetypes and assign them the desired color sequence.

set for [i=101:110] linetype i lc mycolor[i]
set contourfill firstlinetype 101

set contourfill palette restores palette coloring.

Dashtype

The set dashtype command allows you to define a dash pattern that can then be referred to by its index. This
is purely a convenience, as anywhere that would accept the dashtype by its numerical index would also accept
an explicit dash pattern. Example:

set dashtype 5 (2,4,2,6) # define or redefine dashtype number 5
plot f1(x) dt 5 # plot using the new dashtype
plot f1(x) dt (2,4,2,6) # exactly the same plot as above
set linetype 5 dt 5 # always use this dash pattern with linetype 5
set dashtype 66 "..-" # define a new dashtype using a string

See also dashtype (p. 67).

http://www.gnuplot.info/demo/contours.html
http://www.gnuplot.info/demo/discrete.html

gnuplot 6.1 197

Datafile

The set datafile command options control interpretation of fields read from input data files by the plot, splot,
and fit commands. Several options are currently implemented. The settings apply uniformly to all data files
read by subsequent commands; however see functionblocks (p. 142) for a way to work around this if it is
necessary to simultaneously handles files with conflicting formats.

Set datafile columnheaders

The set datafile columnheaders command guarantees that the first row of input will be interpreted as column
headers rather than as data values. It affects all input data sources to plot, splot, fit, and stats commands. If this
setting is disabled by unset datafile columnheaders, the same effect is triggered on a per-file basis if there is
an explicit columnheader() function in a using specifier or plot title associated with that file. See also set key
autotitle (p. 215) and columnheader (p. 175).

Set datafile fortran

The set datafile fortran command enables a special check for values in the input file expressed as Fortran D or
Q constants. This extra check slows down the input process, and should only be selected if you do in fact have
datafiles containing Fortran D or Q constants. The option can be disabled again using unset datafile fortran.

Set datafile nofpe_trap

The set datafile nofpe_trap command tells gnuplot not to re-initialize a floating point exception handler before
every expression evaluation used while reading data from an input file. This can significantly speed data input
from very large files at the risk of program termination if a floating-point exception is generated.

Set datafile missing

Syntax:
set datafile missing "<string>"
set datafile missing NaN
show datafile missing
unset datafile

The set datafile missing command tells gnuplot there is a special string used in input data files to denote a
missing data entry. There is no default character for missing. Gnuplot makes a distinction between missing
data and invalid data (e.g. "NaN", 1/0.). For example invalid data causes a gap in a line drawn through
sequential data points; missing data does not.

Non-numeric characters found in a numeric field will usually be interpreted as invalid rather than as a missing
data point unless they happen to match the missing string.

Conversely set datafile missing NaN causes all data or expressions evaluating to not-a-number (NaN) to be
treated as missing data. See the imageNaN demo.

The program notices a missing value flag in columnNwhen the using specifier in a plot command directly refers
to the column as using N, using ($N), or using (function($N)). In these cases the expression, e.g. func($N),
is not evaluated at all.

http://www.gnuplot.info/demo/imageNaN.html

198 gnuplot 6.1

The current gnuplot version also notices direct references of the form (column(N)), and it notices during eval-
uation if the expression depends even indirectly on a column value flagged "missing".

In all these cases the program treats the entire input data line as if it were not present at all. However if an
expression depends on a data value that is truly missing (e.g. an empty field in a csv file) it may not be caught
by these checks. If it evaluates to NaN it will be treated as invalid data rather than as a missing data point. If
you want to treat such invalid data the same as missing data, use the command set datafile missing NaN.

Set datafile separator

The command set datafile separator tells gnuplot that data fields in subsequent input files are separated by a
specific character rather than by whitespace. The most common use is to read in csv (comma-separated value)
files written by spreadsheet or database programs. By default data fields are separated by whitespace.

Syntax:
set datafile separator {whitespace | tab | comma | "<chars>"}

Examples:
Input file contains tab-separated fields
set datafile separator "\t"

Input file contains comma-separated values fields
set datafile separator comma

Input file contains fields separated by either * or |
set datafile separator "*|"

Set datafile commentschars

The command set datafile commentschars specifies what characters can be used in a data file to begin com-
ment lines. If the first non-blank character on a line is one of these characters then the rest of the data line is
ignored. Default value of the string is "#!" on VMS and "#" otherwise.

Syntax:
set datafile commentschars {"<string>"}
show datafile commentschars
unset commentschars

Then, the following line in a data file is completely ignored
1 2 3 4

but the following
1 # 3 4

will be interpreted as garbage in the 2nd column followed by valid data in the 3rd and 4th columns.

Example:
set datafile commentschars "#!%"

gnuplot 6.1 199

Set datafile binary

The set datafile binary command is used to set the defaults when reading binary data files. The syntax matches
precisely that used for commands plot and splot. See binary matrix (p. 295) and binary general (p. 150)
for details about the keywords that can be present in <binary list>.

Syntax:
set datafile binary <binary list>
show datafile binary
show datafile
unset datafile

Examples:
set datafile binary filetype=auto
set datafile binary array=(512,512) format="%uchar"
show datafile binary # list current settings

Decimalsign

The set decimalsign command selects a decimal sign for numbers printed into tic labels or set label strings.

Syntax:
set decimalsign {<value> | locale {"<locale>"}}
unset decimalsign
show decimalsign

The argument <value> is a string to be used in place of the usual decimal point. Typical choices include the
period, ’.’, and the comma, ’,’, but others may be useful, too. If you omit the <value> argument, the decimal
separator is not modified from the usual default, which is a period. Unsetting decimalsign has the same effect
as omitting <value>.

Example:

Correct typesetting in most European countries requires:
set decimalsign ','

Please note: If you set an explicit string, this affects only numbers that are printed using gnuplot’s gprintf()
formatting routine, including axis tics. It does not affect the format expected for input data, and it does not
affect numbers printed with the sprintf() formatting routine. To change the behavior of both input and output
formatting, instead use the form

set decimalsign locale

This instructs the program to use both input and output formats in accordance with the current setting of the
LC_ALL, LC_NUMERIC, or LANG environmental variables.

set decimalsign locale "foo"

This instructs the program to format all input and output in accordance with locale "foo", which must be
installed. If locale "foo" is not found then an error message is printed and the decimal sign setting is un-
changed. On linux systems you can get a list of the locales installed on your machine by typing "locale -a".
A typical linux locale string is of the form "sl_SI.UTF-8". A typical Windows locale string is of the form
"Slovenian_Slovenia.1250" or "slovenian". Please note that interpretation of the locale settings is done by
the C library at runtime. Older C libraries may offer only partial support for locale settings such as the thousands
grouping separator character.

set decimalsign locale; set decimalsign "."

This sets all input and output to use whatever decimal sign is correct for the current locale, but over-rides this
with an explicit ’.’ in numbers formatted using gnuplot’s internal gprintf() function.

200 gnuplot 6.1

Dgrid3d

The set dgrid3d command enables and sets parameters for mapping non-grid data onto a grid. See splot
grid_data (p. 298) for details about the grid data structure. Aside from its use in fitting 3D surfaces, this
process can also be used to generate 2D heatmaps, where the ’z’ value of each point contributes to a local
weighted value.

Syntax:
set dgrid3d {<rows>} {,{<cols>}} splines
set dgrid3d {<rows>} {,{<cols>}} qnorm {<norm>}
set dgrid3d {<rows>} {,{<cols>}} {gauss | cauchy | exp | box | hann}

{kdensity} {<dx>} {,<dy>}
unset dgrid3d
show dgrid3d

By default dgrid3d is disabled. When enabled, 3D data points read from a file are treated as a scattered data
set used to fit a gridded surface. The grid dimensions are derived from the bounding box of the scattered
data subdivided by the row/col_size parameters from the set dgrid3d statement. The grid is equally spaced
in x (rows) and in y (columns); the z values are computed as weighted averages or spline interpolations of the
scattered points’ z values. In other words, a regularly spaced grid is created and then a smooth approximation
to the raw data is evaluated for each grid point. This surface is then plotted in place of the raw data.

While dgrid3d mode is enabled, if you want to plot individual points or lines without using them to create a
gridded surface you must append the keyword nogrid to the corresponding splot command.

The number of columns defaults to the number of rows, which defaults to 10.

Several algorithms are available to calculate the approximation from the raw data. Some of these algorithms
can take additional parameters. These interpolations are such that the closer the data point is to a grid point,
the more effect it has on that grid point.

The splines algorithm calculates an interpolation based on thin plate splines. It does not take additional pa-
rameters.

The qnorm algorithm calculates a weighted average of the input data at each grid point. Each data point is
weighted by the inverse of its distance from the grid point raised to some power. The power is specified as an
optional integer parameter that defaults to 1. This algorithm is the default.

Finally, several smoothing kernels are available to calculate weighted averages: z = Sum_i w(d_i) * z_i / Sum_i
w(d_i), where z_i is the value of the i-th data point and d_i is the distance between the current grid point and
the location of the i-th data point. All kernels assign higher weights to data points that are close to the current
grid point and lower weights to data points further away.

The following kernels are available:
gauss : w(d) = exp(-d*d)
cauchy : w(d) = 1/(1 + d*d)
exp : w(d) = exp(-d)
box : w(d) = 1 if d<1

= 0 otherwise
hann : w(d) = 0.5*(1+cos(pi*d)) if d<1

w(d) = 0 otherwise

When using one of these five smoothing kernels, up to two additional numerical parameters can be specified:
dx and dy. These are used to rescale the coordinate differences when calculating the distance: d_i = sqrt(
((x-x_i)/dx)**2 + ((y-y_i)/dy)**2), where x,y are the coordinates of the current grid point and x_i,y_i are

gnuplot 6.1 201

the coordinates of the i-th data point. The value of dy defaults to the value of dx, which defaults to 1. The
parameters dx and dy make it possible to control the radius over which data points contribute to a grid point
IN THE UNITS OF THE DATA ITSELF.

The optional keyword kdensity, which must come after the name of the kernel, but before the optional scale
parameters, modifies the algorithm so that the values calculated for the grid points are not divided by the
sum of the weights (z = Sum_i w(d_i) * z_i). If all z_i are constant, this effectively plots a bivariate kernel
density estimate: a kernel function (one of the five defined above) is placed at each data point, the sum of
these kernels is evaluated at every grid point, and this smooth surface is plotted instead of the original data.
This is similar in principle to what the smooth kdensity option does to 1D datasets. See kdensity2d.dem and
heatmap_points.dem for usage example.

 0
 0.5

 1
 1.5

 2
 2.5

 3 0 0.5 1 1.5 2

-2
 0
 2
 4
 6
 8

 10
 12

Smooth surface fit to scattered points
set dgrid3d 30,30 splines

The dgrid3d option is a simple scheme which replaces
scattered data with weighted averages on a regular grid.
More sophisticated approaches to this problem exist and
should be used to preprocess the data outside gnuplot if
this simple solution is found inadequate.

See also the online demos for dgrid3d

scatter

and heatmap_points

Dummy

The set dummy (p. 201) command changes the default dummy variable names.

Syntax:

set dummy {<dummy-var>} {,<dummy-var>}
show dummy

By default, gnuplot assumes that the independent, or "dummy", variable for the plot command is "t" if in
parametric or polar mode, or "x" otherwise. Similarly the independent variables for the splot command are
"u" and "v" in parametric mode (splot cannot be used in polar mode), or "x" and "y" otherwise.

It may be more convenient to call a dummy variable by a more physically meaningful or conventional name.
For example, when plotting time functions:

set dummy t
plot sin(t), cos(t)

Examples:

set dummy u,v
set dummy ,s

The second example sets the second variable to s. To reset the dummy variable names to their default values,
use

unset dummy

http://www.gnuplot.info/demo/dgrid3d.html
http://www.gnuplot.info/demo/scatter.html
http://www.gnuplot.info/demo/heatmap_points.html

202 gnuplot 6.1

Encoding

The set encoding command selects a character encoding.

Syntax:
set encoding {<value>}
set encoding locale
show encoding

Valid values are
default - tells a terminal to use its default encoding
iso_8859_1 - the most common Western European encoding prior to UTF-8.

Known in the PostScript world as 'ISO-Latin1'.
iso_8859_15 - a variant of iso_8859_1 that includes the Euro symbol
iso_8859_2 - used in Central and Eastern Europe
iso_8859_9 - used in Turkey (also known as Latin5)
koi8r - popular Unix cyrillic encoding
koi8u - Ukrainian Unix cyrillic encoding
cp437 - codepage for MS-DOS
cp850 - codepage for OS/2, Western Europe
cp852 - codepage for OS/2, Central and Eastern Europe
cp950 - MS version of Big5 (emf terminal only)
cp1250 - codepage for MS Windows, Central and Eastern Europe
cp1251 - codepage for 8-bit Russian, Serbian, Bulgarian, Macedonian
cp1252 - codepage for MS Windows, Western Europe
cp1254 - codepage for MS Windows, Turkish (superset of Latin5)
sjis - shift-JIS Japanese encoding
utf8 - variable-length (multibyte) representation of Unicode

entry point for each character

The command set encoding locale is different from the other options. It attempts to determine the current lo-
cale from the runtime environment. Onmost systems this is controlled by the environmental variables LC_ALL,
LC_CTYPE, or LANG. This mechanism is necessary, for example, to pass multibyte character encodings such
as UTF-8 or EUC_JP to the wxt and pdf terminals. This command does not affect the locale-specific repre-
sentation of dates or numbers. See also set locale (p. 223) and set decimalsign (p. 199).

Generally you should set the encoding before setting the terminal type, as it may affect the selection of fonts.

Errorbars

The set errorbars command controls the tics at the ends of error bars, and also at the end of the whiskers
belonging to a boxplot.

Syntax:
set errorbars {small | large | fullwidth | <size>} {front | back}

{line-properties}
unset errorbars
show errorbars

small is a synonym for 0.0 (no crossbar), and large for 1.0. The default is 1.0 if no size is given.

The keyword fullwidth is relevant only to boxplots and to histograms with errorbars. It sets the width of the
errorbar ends to be the same as the width of the associated box. It does not change the width of the box itself.

The front and back keywords are relevant only to errorbars attached to filled rectangles (boxes, candlesticks,
histograms).

gnuplot 6.1 203

Error bars are by default drawn using the same line properties as the border of the associated box. You can
change this by providing a separate set of line properties for the error bars.

set errorbars linecolor black linewidth 0.5 dashtype '.'

Fit

The set fit command controls the options for the fit command.

Syntax:
set fit {nolog | logfile {"<filename>"|default}}

{{no}quiet|results|brief|verbose}
{{no}errorvariables}
{{no}covariancevariables}
{{no}errorscaling}
{{no}prescale}
{maxiter <value>|default}
{limit <epsilon>|default}
{limit_abs <epsilon_abs>}
{start-lambda <value>|default}
{lambda-factor <value>|default}
{script {"<command>"|default}}
{v4 | v5}

unset fit
show fit

The logfile option defines where the fit commandwrites its output. The<filename> argumentmust be enclosed
in single or double quotes. If no filename is given or unset fit is used the log file is reset to its default value
"fit.log" or the value of the environmental variable FIT_LOG. If the given logfile name ends with a / or \, it
is interpreted to be a directory name, and the actual filename will be "fit.log" in that directory.

By default the information written to the log file is also echoed to the terminal session. set fit quiet turns off
the echo, whereas results prints only final results. brief gives one line summaries for every iteration of the fit
in addition. verbose yields detailed iteration reports as in version 4.

If the errorvariables option is turned on, the error of each fitted parameter computed by fit will be copied to
a user-defined variable whose name is formed by appending "_err" to the name of the parameter itself. This
is useful mainly to put the parameter and its error onto a plot of the data and the fitted function, for reference,
as in:

set fit errorvariables
fit f(x) 'datafile' using 1:2 via a, b
print "error of a is:", a_err
set label 1 sprintf("a=%6.2f +/- %6.2f", a, a_err)
plot 'datafile' using 1:2, f(x)

If the errorscaling option is specified, which is the default, the calculated parameter errors are scaled with the
reduced chi square. This is equivalent to providing data errors equal to the calculated standard deviation of the
fit (FIT_STDFIT) resulting in a reduced chi square of one. With the noerrorscaling option the estimated errors
are the unscaled standard deviations of the fit parameters. If no weights are specified for the data, parameter
errors are always scaled.

If the prescale option is turned on, parameters are prescaled by their initial values before being passed to the
Marquardt-Levenberg routine. This helps tremendously if there are parameters that differ in size by many
orders of magnitude. Fit parameters with an initial value of exactly zero are never prescaled.

204 gnuplot 6.1

The maximum number of iterations may be limited with the maxiter option. A value of 0 or default means
that there is no limit.

The limit option can be used to change the default epsilon limit (1e-5) to detect convergence. When the sum of
squared residuals changes by a factor less than this number (epsilon), the fit is considered to have ’converged’.
The limit_abs option imposes an additional absolute limit in the change of the sum of squared residuals and
defaults to zero.

If you need even more control about the algorithm, and know the Marquardt-Levenberg algorithm well, the
following options can be used to influence it. The startup value of lambda is normally calculated automatically
from the ML-matrix, but if you want to, you may provide your own using the start_lambda option. Setting it
to default will re-enable the automatic selection. The option lambda_factor sets the factor by which lambda
is increased or decreased whenever the chi-squared target function increased or decreased significantly. Setting
it to default re-enables the default factor of 10.0.

The script option may be used to specify a gnuplot command to be executed when a fit is interrupted— see fit
(p. 133). This setting takes precedence over the default of replot and the environment variable FIT_SCRIPT.

If the covariancevariables option is turned on, the covariances between final parameters will be saved to
user-defined variables. The variable name for a certain parameter combination is formed by prepending
"FIT_COV_" to the name of the first parameter and combining the two parameter names by "_". For example
given the parameters "a" and "b" the covariance variable is named "FIT_COV_a_b".

In version 5 the syntax of the fit command changed and it now defaults to unitweights if no ’error’ keyword is
given. The v4 option restores the default behavior of gnuplot version 4, see also fit (p. 133).

Fontpath

Syntax:
set fontpath "/directory/where/my/fonts/live"
set term postscript fontfile <filename>

[DEPRECATED in version 5.4]

The fontpath directory is relevant only for embedding fonts in postscript output produced by the postscript
terminal. It has no effect on other gnuplot terminals. If you are not embedding fonts you do not need this
command, and even if you are embedding fonts you only need it for fonts that cannot be found via the other
paths below.

Earlier versions of gnuplot tried to emulate a font manager by tracking multiple directory trees containing fonts.
This is now replaced by a search in the following places: (1) an absolute path given in the set term postscript
fontfile command (2) the current directory (3) any of the directories specified by set loadpath (4) the directory
specified by set fontpath (5) the directory provided in environmental variable GNUPLOT_FONTPATH

Note: The search path for fonts specified by filename for the libgd terminals (png gif jpeg sixel) is controlled
by environmental variable GDFONTPATH.

Format

The format of the axis tic-mark labels can be set with the set format command or with the set tics format
or individual set {axis}tics format commands. For information on using an explicit format for input data see
using format (p. 168).

Syntax:

gnuplot 6.1 205

set format {<axes>} {"<format-string>"} {numeric|timedate|geographic}
show format

where <axes> is either x, y, xy, x2, y2, z, cb or nothing (which applies the format to all axes). The following
two commands are equivalent:

set format y "%.2f"
set ytics format "%.2f"

The format type (numeric, timedate, or geographic) controls interpretation of the format string. Numeric
formats are handled by gnuplot’s gprintf routine. See format numeric (p. 205). This is the default unless the
axis has been marked as representing time or geographic coordinates. See set xdata time (p. 278), format
time_specifiers (p. 207), geographic (p. 286).

The length of the format string is restricted to 100 characters. The default format is "% h", except that LaTeX
terminals use "$%h$". You can modify this to provide units or a different numeric format, for example ’set
xtics format "%.2f MHz"’. "set format" with no following string will restore the default.

If the empty string "" is given, tics will have no labels, although the tic mark will still be plotted. To eliminate
the tic marks, use unset xtics or set tics scale 0.

Newline (\n) and enhanced text markup is accepted in the format string. Use double-quotes rather than single-
quotes in this case. See also syntax (p. 85). Characters not preceded by "%" are printed verbatim. Thus you
can include spaces and labels in your format string, such as "%g m", which will put " m" after each number.
If you want "%" itself, double it: "%g %%".

See also set xtics (p. 282) for more information about tic labels, and set decimalsign (p. 199) for
how to use non-default decimal separators in numbers printed this way. See also electron demo
(electron.dem).

Numeric format specifiers

Numeric format specifiers are interpreted by gnuplot’s gprintf function. These specifiers are based on, but are
not the same as, the formats used by sprintf. Axis tic-marks use these formats unless the axis has been set to
represent time/date or geographic coordinate data (see set xdata (p. 278)).

http://www.gnuplot.info/demo/electron.html
http://www.gnuplot.info/demo/electron.html

206 gnuplot 6.1

Tic-mark label numerical format specifiers
Format Explanation
%f floating point notation

%e or %E exponential notation; an ”e” or ”E” before the power
%g or %G the shorter of %e (or %E) and %f
%h or %H like %g with "x10^{%S}" or "*10^{%S}" instead of ”e%S”
%x or %X hex
%o or %O octal
%C or %Ci complex value

%t mantissa to base 10
%l mantissa to base of current logscale
%s mantissa to base of current logscale; scientific power
%T power to base 10
%L power to base of current logscale
%S scientific power
%c character replacement for scientific power
%b mantissa of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%B prefix of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%P multiple of pi

A ’scientific’ power is one such that the exponent is a multiple of three. Character replacement of scientific
powers ("%c") has been implemented for powers in the range -18 to +18. For numbers outside of this range
the format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format specifier) are "-", which left-
justifies the number; "+", which forces all numbers to be explicitly signed; " " (a space), which makes positive
numbers have a space in front of them where negative numbers have "-"; "#", which places a decimal point
after floats that have only zeroes following the decimal point; a positive integer, which defines the field width;
"0" (the digit, not the letter) immediately preceding the field width, which indicates that leading zeroes are to
be used instead of leading blanks; and a decimal point followed by a non-negative integer, which defines the
precision (the minimum number of digits of an integer, or the number of digits following the decimal point of
a float).

Some systems may not support all of these modifiers but may also support others; in case of doubt, check the
appropriate documentation and then experiment.

Complex values may be formatted using "%C" or "%Ci" (see gprintf complex (p. 207)).

Examples:
set format y "%t"; set ytics (5,10) # "5.0" and "1.0"
set format y "%s"; set ytics (500,1000) # "500" and "1.0"
set format y "%+-12.3f"; set ytics(12345) # "+12345.000 "
set format y "%.2t*10^%+03T"; set ytic(12345)# "1.23*10^+04"
set format y "%s*10^{%S}"; set ytic(12345) # "12.345*10^{3}"
set format y "%s %cg"; set ytic(12345) # "12.345 kg"
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0f%%"; set ytic(50) # "50%"

set log y 2; set format y '%l'; set ytics (1,2,3)
#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 2^1)

There are some problem cases that arise when numbers like 9.999 are printed with a format that requires both
rounding and a power.

gnuplot 6.1 207

Complex format specifiers gprintf offers two format specifiers, %C and %Ci, to print a complex value.
Both apply format %g separately to the real and imaginary components using any optional field modifiers that
were given. [EXPERIMENTAL]

Suppose complex Z = {1.2, -3.4}.
gprintf("%C", Z) produces the string "{1.2, -3.4}"
gprintf("%Ci", Z) produces the string "1.2 - 3.4i"

The output of "%Ci" can be further customized by the command set imaginary_i to replace the character
"i" that follows the imaginary component with a different character or character sequence. See imaginary_i
(p. 211).

Examples:
Z = {1.2222, 0.3333}
gprintf("%.2C", Z) # {1.2, 0.33}
gprintf("%.3Ci", Z) # 1.22 + 0.333i
set imaginary_i "{/Times*0.5 im}"
gprintf("[%Ci]", Z) # [1.2222 + 0.3333im]
gprintf("[%.1Ci]", -Z) # [-1 - 0.3im]

Time/date specifiers

These format specifiers are used to generate axis tic-mark labels if the axis represents time data. See set xdata
time (p. 278). They are also used by the gnuplot’s strftime function.

There are two groups of time format specifiers: time/date and relative time. These may be used to generate
axis tic labels or to encode time in a string. See set xtics time (p. 285), strftime (p. 46), strptime (p. 46).
The time/date formats are

Date Specifiers
Format Explanation
%a abbreviated name of day of the week
%A full name of day of the week

%b or %h abbreviated name of the month
%B full name of the month
%d day of the month, 01–31
%D shorthand for "%m/%d/%y" (only output)
%F shorthand for "%Y-%m-%d" (only output)
%k hour, 0–23 (one or two digits)
%H hour, 00–23 (always two digits)
%l hour, 1–12 (one or two digits)
%I hour, 01–12 (always two digits)
%j day of the year, 001–366
%m month, 01–12
%M minute, 00–60
%p ”am” or ”pm”
%r shorthand for "%I:%M:%S %p" (only output)
%R shorthand for %H:%M" (only output)
%S second, integer 00–60 on output, (double) on input

208 gnuplot 6.1

%s number of seconds since start of year 1970
%T shorthand for "%H:%M:%S" (only output)
%U week of the year (CDC/MMWR ”epi week”) (ignored on input)
%w day of the week, 0–6 (Sunday = 0)
%W week of the year (ISO 8601 week date) (ignored on input)
%y year, 0-99 in range 1969-2068
%Y year, 4-digit
%z timezone, [+-]hh:mm
%Z timezone name, ignored string

For more information on the %W format (ISO week of year) see tm_week (p. 52). The %U format
(CDC/MMWR epidemiological week) is similar to %W except that it uses weeks that start on Sunday rather
than Monday. Caveat: Both the %W and the %U formats were unreliable in gnuplot versions prior to 5.4.2.
See unit test "week_date.dem".

The relative time formats express the length of a time interval on either side of a zero time point. The relative
time formats are

Time Specifiers
Format Explanation
%tD +/- days relative to time=0
%tH +/- hours relative to time=0 (does not wrap at 24)
%tM +/- minutes relative to time=0
%tS +/- seconds associated with previous tH or tM field

Numerical formats may be preceded by a "0" ("zero") to pad the field with leading zeroes, and preceded by
a positive digit to define the minimum field width. The %S, and %t formats also accept a precision specifier so
that fractional hours/minutes/seconds can be written.

Examples

Examples of date format:

Suppose the x value in seconds corresponds a time slightly before midnight on 25 Dec 1976. The text printed
for a tic label at this position would be

set format x # defaults to "12/25/76 \n 23:11"
set format x "%A, %d %b %Y" # "Saturday, 25 Dec 1976"
set format x "%r %D" # "11:11:11 pm 12/25/76"
set xtics time format "%B" # "December"

Examples of time format:

The date format specifiers encode a time in seconds as a clock time on a particular day. So hours run only from
0-23, minutes from 0-59, and negative values correspond to dates prior to the epoch (1-Jan-1970). In order to
report a time value in seconds as some number of hours/minutes/seconds relative to a time 0, use time formats
%tH %tM %tS. To report a value of -3672.50 seconds

set format x # default date format "12/31/69 \n 22:58"
set format x "%tH:%tM:%tS" # "-01:01:12"
set format x "%.2tH hours" # "-1.02 hours"
set format x "%tM:%.2tS" # "-61:12.50"

gnuplot 6.1 209

Grid

The set grid command allows grid lines to be drawn on the plot.

Syntax:
set grid {{no}{m}xtics} {{no}{m}ytics} {{no}{m}ztics}

{{no}{m}x2tics} {{no}{m}y2tics} {{no}{m}rtics}
{{no}{m}cbtics}
{polar {<angle>}}
{layerdefault | front | back}
{{no}vertical}
{<line-properties-major> {, <line-properties-minor>}}

unset grid
show grid

The grid can be enabled and disabled for the major and/or minor tic marks on any axis, and the linetype and
linewidth can be specified for major and minor grid lines, also via a predefined linestyle, as far as the active
terminal driver supports this (see set style line (p. 263)).

A polar grid can be drawn for 2D plots. This is the default action of set grid if the program is already in polar
mode, but can be enabled explicitly by set grid polar <angle> rtics whether or not the program is in polar
mode. Circles are drawn to intersect major and/or minor tics along the r axis, and radial lines are drawn with
a spacing of <angle>. Tic marks around the perimeter are controlled by set ttics, but these do not produce
radial grid lines.

The pertinent tics must be enabled before set grid can draw them; gnuplot will quietly ignore instructions to
draw grid lines at non-existent tics, but they will appear if the tics are subsequently enabled.

If no linetype is specified for the minor gridlines, the same linetype as the major gridlines is used. The default
polar angle is 30 degrees.

If front is given, the grid is drawn on top of the graphed data. If back is given, the grid is drawn underneath
the graphed data. Using front will prevent the grid from being obscured by dense data. The default setup,
layerdefault, is equivalent to back for 2D plots. In 3D plots the default is to split up the grid and the graph box
into two layers: one behind, the other in front of the plotted data and functions. Since hidden3dmode does its
own sorting, it ignores all grid drawing order options and passes the grid lines through the hidden line removal
machinery instead. These options actually affect not only the grid, but also the lines output by set border and
the various ticmarks (see set xtics (p. 282)).

In 3D plots grid lines at x- and y- axis tic positions are by default drawn only on the base plane parallel to z=0.
The vertical keyword activates drawing grid lines in the xz and yz planes also, running from zmin to zmax.

Z grid lines are drawn on the bottom of the plot. This looks better if a partial box is drawn around the plot —
see set border (p. 186).

Hidden3d

The set hidden3d command enables hidden line removal for surface plotting (see splot (p. 293)). Some
optional features of the underlying algorithm can also be controlled using this command.

Syntax:
set hidden3d {defaults} |

{ {front|back}
{{offset <offset>} | {nooffset}}
{trianglepattern <bitpattern>}

210 gnuplot 6.1

{{undefined <level>} | {noundefined}}
{{no}altdiagonal}
{{no}bentover} }

unset hidden3d
show hidden3d

In contrast to the usual display in gnuplot, hidden line removal actually treats the given function or data grids
as real surfaces that can’t be seen through, so plot elements behind the surface will be hidden by it. For this to
work, the surface needs to have ’grid structure’ (see splot datafile (p. 294) about this), and it has to be drawn
with lines or with linespoints.

When hidden3d is set, both the hidden portion of the surface and possibly its contours drawn on the base (see
set contour (p. 195)) as well as the grid will be hidden. Each surface has its hidden parts removed with respect
to itself and to other surfaces, if more than one surface is plotted. Contours drawn on the surface (set contour
surface) don’t work.

hidden3d also affects 3D plotting styles points, labels, vectors, and impulses even if no surface is present in
the graph. Unobscured portions of each vector are drawn as line segments (no arrowheads). Individual plots
within the graph may be explicitly excluded from this processing by appending the extra option nohidden3d
to the with specifier.

Hidden3d does not affect solid surfaces drawn using the pm3d mode. To achieve a similar effect purely for
pm3d surfaces, use instead set pm3d depthorder. To mix pm3d surfaces with normal hidden3d processing,
use the option set hidden3d front to force all elements included in hidden3d processing to be drawn after any
remaining plot elements, including the pm3d surface.

Functions are evaluated at isoline intersections. The algorithm interpolates linearly between function points or
data points when determining the visible line segments. This means that the appearance of a function may be
different when plotted with hidden3d than when plotted with nohidden3d because in the latter case functions
are evaluated at each sample. Please see set samples (p. 257) and set isosamples (p. 212) for discussion of
the difference.

The algorithm used to remove the hidden parts of the surfaces has some additional features controllable by this
command. Specifying defaults will set them all to their default settings, as detailed below. If defaults is not
given, only explicitly specified options will be influenced: all others will keep their previous values, so you can
turn on/off hidden line removal via set {no}hidden3d, without modifying the set of options you chose.

The first option, offset, influences the linetype used for lines on the ’back’ side. Normally, they are drawn
in a linetype one index number higher than the one used for the front, to make the two sides of the surface
distinguishable. You can specify a different linetype offset to add instead of the default 1, by offset <offset>.
Option nooffset stands for offset 0, making the two sides of the surface use the same linetype.

Next comes the option trianglepattern <bitpattern>. <bitpattern> must be a number between 0 and 7,
interpreted as a bit pattern. Each bit determines the visibility of one edge of the triangles each surface is split
up into. Bit 0 is for the ’horizontal’ edges of the grid, Bit 1 for the ’vertical’ ones, and Bit 2 for the diagonals
that split each cell of the original grid into two triangles. The default pattern is 3, making all horizontal and
vertical lines visible, but not the diagonals. You may want to choose 7 to see those diagonals as well.

The undefined <level> option lets you decide what the algorithm is to do with data points that are undefined
(missing data, or undefined function values), or exceed the given x-, y- or z-ranges. Such points can either be
plotted nevertheless, or taken out of the input data set. All surface elements touching a point that is taken out
will be taken out as well, thus creating a hole in the surface. If<level> = 3, equivalent to option noundefined,
no points will be thrown away at all. This may produce all kinds of problems elsewhere, so you should avoid
this. <level> = 2 will throw away undefined points, but keep the out-of-range ones. <level> = 1, the default,

gnuplot 6.1 211

will get rid of out-of-range points as well.

By specifying noaltdiagonal, you can override the default handling of a special case can occur if undefined is
active (i.e. <level> is not 3). Each cell of the grid-structured input surface will be divided in two triangles along
one of its diagonals. Normally, all these diagonals have the same orientation relative to the grid. If exactly one
of the four cell corners is excluded by the undefined handler, and this is on the usual diagonal, both triangles
will be excluded. However if the default setting of altdiagonal is active, the other diagonal will be chosen for
this cell instead, minimizing the size of the hole in the surface.

The bentover option controls what happens to another special case, this time in conjunction with the trian-
glepattern. For rather crumply surfaces, it can happen that the two triangles a surface cell is divided into are
seen from opposite sides (i.e. the original quadrangle is ’bent over’), as illustrated in the following ASCII art:

C----B
original quadrangle: A--B displayed quadrangle: |\ |

("set view 0,0") | /| ("set view 75,75" perhaps) | \ |
|/ | | \ |
C--D | \|

A D

If the diagonal edges of the surface cells aren’t generally made visible by bit 2 of the <bitpattern> there, the
edge CB above wouldn’t be drawn at all, normally, making the resulting display hard to understand. Therefore,
the default option of bentoverwill turn it visible in this case. If you don’t want that, youmay choose nobentover
instead. See also hidden line removal demo (hidden.dem)

and complex hidden line demo (singulr.dem).

History

Syntax:
set history {size <N>} {quiet|numbers} {full|trim} {default}

A log of recent gnuplot commands is kept by default in $HOME/.gnuplot_history. If this file is not found and
xdg desktop support is enabled, the program will instead use $XDG_STATE_HOME/gnuplot_history.

When leaving gnuplot the value of history size limits the number of lines saved to the history file. set history
size -1 allows an unlimited number of lines to be written to the history file.

By default the history command prints a line number in front of each command. history quiet suppresses the
number for this command only. set history quiet suppresses numbers for all future history commands.

The trim option reduces the number of duplicate lines in the history list by removing earlier instances of the
current command.

Default settings: set history size 500 numbers trim.

Imaginary_i

Syntax:
set imaginary_i {"<character string>"}

The gprintf format specifier %Ci prints a complex value {A,B} as A + Bi (see gprintf complex (p. 207)). The
command set imaginary_i "<character string>"modifies the action of %Ci by replacing the character "i"
with the character string requested. Common conventions for this string are shown in the table below. If no
character string is given, the default is restored.

http://www.gnuplot.info/demo/hidden.html
http://www.gnuplot.info/demo/singulr.html

212 gnuplot 6.1

character string result convention
A+Bi default

"\imath" A+Bı may or may not be necessary for LaTeX output
"{/:Italic i}" A + Bi gnuplot enhanced text markup
"\U+2148" A + Bⅈ Unicode DOUBLE-STRUCK ITALIC SMALL I
"\U+1D456" A + Bi Unicode MATHEMATICAL ITALIC SMALL I
"im" A + Bim Julia
"j" A + Bj Numpy

Isosamples

The isoline density (grid) for plotting functions as surfaces may be changed by the set isosamples command.

Syntax:
set isosamples <iso_1> {,<iso_2>}
show isosamples

Each function surface plot will have<iso_1> iso-u lines and<iso_2> iso-v lines. If you only specify<iso_1>,
<iso_2> will be set to the same value as <iso_1>. By default, sampling is set to 10 isolines per u or v axis.
A higher sampling rate will produce more accurate plots, but will take longer. These parameters have no effect
on data file plotting.

An isoline is a curve parameterized by one of the surface parameters while the other surface parameter is fixed.
Isolines provide a simple means to display a surface. By fixing the u parameter of surface s(u,v), the iso-u lines
of the form c(v) = s(u0,v) are produced, and by fixing the v parameter, the iso-v lines of the form c(u) = s(u,v0)
are produced.

When a function surface plot is being done without the removal of hidden lines, set samples controls the
number of points sampled along each isoline; see set samples (p. 257) and set hidden3d (p. 209). The
contour algorithm assumes that a function sample occurs at each isoline intersection, so change in samples as
well as isosamples may be desired when changing the resolution of a function surface/contour.

Isosurface

Syntax:
set isosurface {mixed|triangles}
set isosurface {no}insidecolor <n>

Surfaces plotted by the command splot $voxelgrid with isosurface are by default constructed from a mix-
ture of quadrangles and triangles. The use of quadrangles creates a less complicated visual impression. This
command provides an option to tessellate with only triangles.

By default the inside of an isosurface is drawn in a separate color. The method of choosing that color is the
same as for hidden3d surfaces, where an offset<n> is added to the base linetype. To draw both the inside and
outside surfaces in the same color, use set isosurface noinsidecolor.

Isotropic

Syntax:
set isotropic
unset isotropic

gnuplot 6.1 213

set isotropic adjusts the aspect ratio and size of the plot so that the unit length along the x, y, and z axes is the
same. It is equivalent to set size ratio -1; set view equal xyz and supersedes both of those commands. This
affects both 2D and 3D plots.

unset isotropic relaxes both the 2D and 3D constraints. It is equivalent to the older commands set size noratio;
set view noequal_axes but hopefully easier to remember.

Jitter

Syntax:
set jitter {overlap <yposition>} {spread <factor>} {wrap <limit>}

{swarm|square|vertical}

Examples:
set jitter # jitter points within 1 character width
set jitter overlap 1.5 # jitter points within 1.5 character width
set jitter over 1.5 spread 0.5 # same but half the displacement on x

When one or both coordinates of a data set are restricted to discrete values then many points may lie exactly
on top of each other. Jittering introduces an offset to the coordinates of these superimposed points that spreads
them into a cluster. The threshold value for treating the points as being overlapped may be specified in character
widths or any of the usual coordinate options. See coordinates (p. 38). Jitter affects 2D plot styleswith points,
with impulses and with boxplot. It also affects 3D plotting of voxel grids.

The default jittering operation displaces points only along x. This produces a distinctive pattern sometimes
called a "bee swarm plot". The optional keyword square adjusts the y coordinate of displaced points in
addition to their x coordinate so that the points lie in distinct layers separated by at least the overlap distance.

To jitter along y (only) rather than along x, use keyword vertical.

The maximum displacement (in character units) can be limited using the wrap keyword.

Note that both the overlap criterion and the magnitude of jitter default to one character unit. Thus the plot
appearance will change with the terminal font size, canvas size, or zoom factor. To avoid this you can specify
the overlap criterion in the y axis coordinate system (the first keyword) and adjust the point size and spread
multiplier as appropriate. See coordinates (p. 38), pointsize (p. 253).

Caveat: jitter is incompatible with "pointsize variable".

set jitter is also useful in 3D plots of voxel data. Because voxel grids are regular lattices of evenly spaced points,
many view angles cause points to overlap and/or generate Moiré patterns. These artifacts can be removed by
displacing the symbol drawn at each grid point by a random amount.

Key

The set key command enables a key (or legend) containing a title and a sample (line, point, box) for each plot
in the graph. The key may be turned off by requesting set key off or unset key. Individual key entries may be
turned off by using the notitle keyword in the corresponding plot command. The text of the titles is controlled
by the set key autotitle option or by the title keyword of individual plot and splot commands.

See key placement (p. 217) for syntax of options that affect where the key is placed.
See key layout (p. 216) for syntax of options that affect the content of the key.

Syntax (global options):

214 gnuplot 6.1

set key {on|off} {default}
{font "<face>,<size>"} {{no}enhanced}
{{no}title "<text>" {}}
{{no}autotitle {columnheader}}
{{no}box {<line properties>}} {{no}opaque {fc <colorspec>}}
{width <width_increment>} {height <height_increment>}

unset key

By default the key is placed in the upper right inside corner of the graph. The optional font becomes the default
for all elements of the key. You can provide an option title for the key as a whole that spans the full width of
the key at the top. This title can use different font, color, justification, and enhancement from individual plot
titles.

Each component in a plot command is represented in the key by a single line containing corresponding title
text and a line or symbol or shape representing the plot style. The title text may be auto-generated or given
explicitly in the plot command as title "text". Using the keyword notitle in the plot command will suppress
generation of the entire line. If you want to suppress the text only, use title "" in the plot command.

Contour plots generated additional entries in the key (see cntrlabel (p. 191)). You can add extra lines to the
key by inserting a dummy plot command that uses the keyword keyentry rather than a filename or a function.
See keyentry (p. 215).

A box can be drawn around the key (box {...}) with user-specified line properties. The height and width
increments (specified in character units) are added to or subtracted from the size of the key box. This is useful
mainly when you want larger borders around the key entries.

By default the key is built up one plot at a time. That is, the key symbol and title are drawn at the same time
as the corresponding plot. That means newer plots may sometimes place elements on top of the key. set key
opaque causes the key to be generated after all the plots. In this case the key area is filled with background
color or the requested fill color and then the key symbols and titles are written. The default can be restored by
set key noopaque.

The text in the key uses enhanced mode by default. This can be suppressed by the noenhanced keyword
applied to the entire key, to the key title only, or to individual plot titles.

set key default restores the default key configuration.
set key notitle
set key nobox noopaque
set key fixed right top vertical Right noreverse enhanced autotitle
set key noinvert samplen 4 spacing 1 width 0 height 0
set key maxcolumns 0 maxrows 0

3D key

Placement of the key for 3D plots (splot) by default uses the fixed option. This is very similar to inside
placement with one important difference. The plot boundaries of a 3D plot change as the view point is rotated
or scaled. If the key is positioned inside these boundaries then the key also moves when the view is changed.
fixed positioning ignores changes to the view angles or scaling; i.e. the key remains fixed in one location on the
canvas as the plot is rotated.

For 2D plots the fixed option is exactly equivalent to inside.

If splot is being used to draw contours, by default a separate key entry is generated for each contour level with
a distinct line type. To modify this see set cntrlabel (p. 191).

gnuplot 6.1 215

Key examples

This places the key at the default location:
set key default

This places a key at a specific place (upper right) on the screen:
set key at screen 0.85, 0.85

This places the key below the graph and minimizes the vertical space taken:
set key below horizontal

This places the key in the bottom left corner of the plot, left-justifies the text, gives the key box a title at the
top, and draws a box around it with a thick border:

set key left bottom Left title 'Legend' box lw 3

Extra key entries

 0

 1

 2

 3

 0 1 2 3 4

 Outcomes
no effect
threshold
typical range
as reported in [12]
strong effect

Construct key from custom entries
Normally each plot autogenerates a single line entry in
the key. If you need more control over what appears in
the key you can use the keyentry keyword in the plot
or splot command to insert extra lines. Instead of pro-
viding a filename or function to plot, use keyentry as a
placeholder followed by plot style information (used to
generate a key symbol) and a title. All the usual options
for title font, text color, at coordinates, and enhanced text
markup apply. Example:

set key outside right center
plot $HEATMAP matrix with image notitle, \

keyentry "Outcomes" left, \
keyentry with boxes fc palette cb 0 title "no effect", \
keyentry with boxes fc palette cb 1 title "threshold", \
keyentry with boxes fc palette cb 3 title "typical range", \
keyentry title "as reported in [12]", \
keyentry with boxes fc palette cb 5 title "strong effect"

The line generated by keyentry "Outcomes" left places left-justified text in the space that would normally
hold the sample. This allows an embedded title that may span the full width of the key. If a title is given also
in the same keyentry then both strings appear on the same line, allowing generation of two-column key entries.
You can use keywords left/right/center for justification, boxed, etc. Example:

plot ..., keyentry "West Linn" boxed title "locations"

Key autotitle

set key autotitle causes each plot to be identified in the key by the name of the data file or function used in
the plot command. This is the default. set key noautotitle disables the automatic generation of plot titles. The
command set key autotitle columnheader causes the first entry in each column of input data to be interpreted
as a text string and used as a title for the corresponding plot. If the quantity being plotted is a function of data
from several columns, gnuplot may be confused as to which column to draw the title from. In this case it is
necessary to specify the column explicitly in the plot command, e.g.

216 gnuplot 6.1

plot "datafile" using (($2+$3)/$4) title columnhead(3) with lines

Note: The effect of set key autotitle columnheader, treatment of the first line in a data file as column headers
rather than data applies even if the key is disabled by unset key. It also applies to stats and fit commands even
though they generate no key. If you want the first line of data to be treated as column headers but not to use
them for plot titles, use set datafile columnheaders.

In all cases an explicit title or notitle keyword in the plot command itself will override the default from set key
autotitle.

Key layout

Key layout options:
set key {vertical | horizontal}

{maxcols {<max no. of columns> | auto}}
{maxrows {<max no. of rows> | auto}}
{columns <exact no. of columns>}
{keywidth [screen|graph] <fraction>}
{Left | Right}
{{no}reverse} {{no}invert}
{samplen <sample_length>} {spacing <line_spacing>}
{width <width_increment>} {height <height_increment>}
{title {"<text>"} {{no}enhanced} {center | left | right}}
{font "<face>,<size>"} {textcolor <colorspec>}

Automatic arrangement of elements within the key into rows and columns is affected by the keywords shown
above. The default is vertical, for which the key uses the fewest columns possible. Elements are aligned in a
column until there is no more vertical space, at which point a new column is started. The vertical space may
be limited using ’maxrows’. In the case of horizontal, the key instead uses the fewest rows possible. The
horizontal space may be limited using ’maxcols’.

The auto-selected number of rows and columns may be unsatisfactory. You can specify a definite number of
columns using set key columns <N>. In this case you may need to adjust the sample widths (samplen) and
the total key width (keywidth).

By default the first plot label is at the top of the key and successive labels are entered below it. The invert
option causes the first label to be placed at the bottom of the key, with successive labels entered above it. This
option is useful to force the vertical ordering of labels in the key to match the order of box types in a stacked
histogram.

set key title "text" places an overall title at the top of the key. Font, text justification, and other text properties
specific to the title can be specified by placing the required keywords immediately after the "text" in this
command. Font or text properties specified elsewhere apply to all text in the key.

The default layout places a style sample (color, line, point, shape, etc) at the left of the key entry line, and
the title text at the right. The text and sample positions can be swapped using the reverse keyword. Text
justification of the individual plot titles within the key is controlled by Left or Right (default). The horizontal
extend of the style sample can be set to an approximate number of character width (samplen).

When using the TeX/LaTeX group of terminals or terminals in which formatting information is embedded in
the string, gnuplot is bad at estimating the amount of space required, so the automatic key layout may be poor.
If the key is to be positioned at the left, it may help to use the combination set key left Left reverse and force
the appropriate number of columns or total key width.

gnuplot 6.1 217

Key placement

Key placement options:
set key {inside | outside | fixed}

{lmargin | rmargin | tmargin | bmargin}
{at <position>}}
{left | right | center} {top | bottom | center}
{offset <dx>,<dy>}

This section describes placement of the primary, auto-generated key. To construct a secondary key or place
plot titles elsewhere, see multiple keys (p. 218).
To understand positioning, the best concept is to think
of a region, i.e., inside/outside, or one of the mar-
gins. Along with the region, keywords left/center/right
(l/c/r) and top/center/bottom (t/c/b) control where
within the particular region the key should be placed.
In insidemode, the keywords left (l), right (r), top (t),
bottom (b), and center (c) push the key out toward the
plot boundary as illustrated here:

t/l t/c t/r

c/l c c/r

b/l b/c b/r

In outside mode, automatic placement is similar to the above illustration, but with respect to the view, rather
than the graph boundary. That is, a border is moved inward to make room for the key outside of the plotting
area, although this may interfere with other labels and may cause an error on some devices. The particular
plot border that is moved depends upon the position described above and the stacking direction. For options
centered in one of the dimensions, there is no ambiguity about which border to move. For the corners, when
the stack direction is vertical, the left or right border is moved inward appropriately. When the stack direction
is horizontal, the top or bottom border is moved inward appropriately.
The margin syntax allows automatic placement of
key regardless of stack direction. When one of
the margins lmargin (lm), rmargin (rm), tmargin
(tm), and bmargin (bm) is combined with a sin-
gle, non-conflicting direction keyword, the key is po-
sitioned along the outside of the page as shown here.
Keywords above and over are synonymous with tmar-
gin. Keywords below and under are synonymous with
bmargin.

l/tm c/tm r/tm

t/lm t/rm

c/lm c/rm

b/lm b/rm

l/bm c/bm r/bm

For version compatibility, above, over, below, or underwithout any additional l/c/r or stack direction keyword
uses center and horizontal. The keyword outside without any additional t/b/c or stack direction keyword uses
top, right and vertical (i.e., the same as t/rm above).

The<position> can be a simple x,y,z as in previous versions, but these can be preceded by one of five keywords
(first, second, graph, screen, character) which selects the coordinate system in which the position of the first
sample line is specified. See coordinates (p. 38) for more details. The effect of left, right, top, bottom, and
center when<position> is given is to align the key as though it were text positioned using the label command,
i.e., left means left align with key to the right of <position>, etc.

Key offset

Regardless of the key placement options chosen, the final position of the key can be adjusted manually by
specifying an offset. As usual, the x and y components of the offset may be given in character, graph, or screen

218 gnuplot 6.1

coordinates.

Key samples

By default, each plot on the graph generates a corresponding entry in the key. This entry contains a plot title
and a sample line/point/box of the same color and fill properties as used in the plot itself. The font and textcolor
properties control the appearance of the individual plot titles that appear in the key. Setting the textcolor to
"variable" causes the text for each key entry to be the same color as the line or fill color for that plot. This was
the default in some earlier versions of gnuplot.

The length of the sample line can be controlled by samplen. The sample length is computed as the sum of the
tic length and <sample_length> times the character width. It also affects the positions of point samples in the
key since these are drawn at the midpoint of the sample line, even if the line itself is not drawn.

Key entry lines are single-spaced based on the current font size. This can be adjusted by set key spacing
<line-spacing>.

The <width_increment> is a number of character widths to be added to or subtracted from the length of the
string. This is useful only when you are putting a box around the key and you are using control characters in the
text. gnuplot simply counts the number of characters in the string when computing the box width; this allows
you to correct it.

Multiple keys

Illustrate use of a custom key area

Custom combined key area
Denmark

Custom combined key area

Netherlands

Custom combined key area

Norway

Custom combined key area

Sweden

1900 1910 1920 1930 1940 1950 1960 1970

Custom combined key area

total

It is possible to construct a legend/key manually rather
than having the plot titles all appear in the auto-generated
key. This allows, for example, creating a single legend for
the component panels in a multiplot.

set multiplot layout 3,2 columnsfirst
set style data boxes
plot $D using 0:6 lt 1 title at .75, .20
plot $D using 0:12 lt 2 title at .75, .17
plot $D using 0:13 lt 3 title at .75, .14
plot $D using 0:14 lt 4 title at .75, .11
set label 1 at screen 0.75, screen 0.22 "Custom combined key area"
plot $D using 0:($6+$12+$13+$14) with linespoints title "total"
unset multiplot

Label

Arbitrary labels can be placed on the plot using the set label command.

Syntax:
set label {<tag>} {"<label text>"} {at <position>}

{left | center | right}
{norotate | rotate {by <degrees>}}
{font "<name>{,<size>}"}
{noenhanced}
{front | back}
{textcolor <colorspec>}
{point <pointstyle> | nopoint}

gnuplot 6.1 219

{offset <offset>}
{nobox} {boxed {bs <boxstyle>}}
{hypertext}

unset label {<tag>}
show label

The<position> is specified by either x,y or x,y,z, and may be preceded by first, second, polar, graph, screen,
or character to indicate the coordinate system. See coordinates (p. 38) for details.

The tag is an integer that is used to identify the label. If no <tag> is given, the lowest unused tag value is
assigned automatically. The tag can be used to delete or modify a specific label. To change any attribute of
an existing label, use the set label command with the appropriate tag, and specify the parts of the label to be
changed.

The<label text> can be a string constant, a string variable, or a string- valued expression. See strings (p. 82),
sprintf (p. 46), and gprintf (p. 46).

By default, the text is placed flush left against the point x,y,z. To adjust the way the label is positioned with
respect to the point x,y,z, add the justification parameter, which may be left, right or center, indicating that
the point is to be at the left, right or center of the text. Labels outside the plotted boundaries are permitted but
may interfere with axis labels or other text.

Some terminals support enclosing the label in a box. See set style textbox (p. 266). Not all terminals can
handle boxes for rotated text.

If rotate is given, the label is written vertically. If rotate by <degrees> is given, the baseline of the text will
be set to the specified angle. Some terminals do not support text rotation.

Font and its size can be chosen explicitly by font "<name>{,<size>}" if the terminal supports font settings.
Otherwise the default font of the terminal will be used.

Normally the enhanced text mode string interpretation, if enabled for the current terminal, is applied to all text
strings including label text. The noenhanced property can be used to exempt a specific label from the enhanced
text mode processing. The can be useful if the label contains underscores, for example. See enhanced text
(p. 39).

If front is given, the label is written on top of the graphed data. If back is given (the default), the label is
written underneath the graphed data. Using front will prevent a label from being obscured by dense data.

textcolor <colorspec> changes the color of the label text. <colorspec> can be a linetype, an rgb color, or a
palette mapping. See help for colorspec (p. 65) and palette (p. 47). textcolor may be abbreviated tc.

`tc default` resets the text color to its default state.
`tc lt <n>` sets the text color to that of line type <n>.
`tc ls <n>` sets the text color to that of line style <n>.
`tc palette z` selects a palette color corresponding to the label z position.
`tc palette cb <val>` selects a color corresponding to <val> on the colorbox.
`tc palette fraction <val>`, with 0<=val<=1, selects a color corresponding to

the mapping [0:1] to grays/colors of the `palette`.
`tc rgb "#RRGGBB"` or `tc rgb "0xRRGGBB"` sets an arbitrary 24-bit RGB color.
`tc rgb 0xRRGGBB` As above; a hexadecimal constant does not require quotes.

If a <pointstyle> is given, using keywords lt, pt and ps, see style (p. 176), a point with the given style and
color of the given line type is plotted at the label position and the text of the label is displaced slightly. This
option is used by default for placing labels inmouse enhanced terminals. Use nopoint to turn off the drawing
of a point near the label (this is the default).

The displacement defaults to 1,1 in pointsize units if a<pointstyle> is given, 0,0 if no<pointstyle> is given.
The displacement can be controlled by the optional offset <offset> where <offset> is specified by either x,y

220 gnuplot 6.1

or x,y,z, and may be preceded by first, second, graph, screen, or character to select the coordinate system.
See coordinates (p. 38) for details.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string according
to the timefmt format string. See set xdata (p. 278) and set timefmt (p. 271).

The options available for set label are also available for the labels plot style. See labels (p. 112). In this case
the properties textcolor, rotate, and pointsize may be followed by keyword variable rather than by a fixed
value. In this case the corresponding property of individual labels is determined by additional columns in the
using specifier.

Examples

Examples:

To set a label at (1,2) to "y=x", use:
set label "y=x" at 1,2

To set a Sigma of size 24, from the Symbol font set, at the center of the graph, use:
set label "S" at graph 0.5,0.5 center font "Symbol,24"

To set a label "y=x^2" with the right of the text at (2,3,4), and tag the label as number 3, use:
set label 3 "y=x^2" at 2,3,4 right

To change the preceding label to center justification, use:
set label 3 center

To delete label number 2, use:
unset label 2

To delete all labels, use:
unset label

To show all labels (in tag order), use:
show label

To set a label on a graph with a timeseries on the x axis, use, for example:
set timefmt "%d/%m/%y,%H:%M"
set label "Harvest" at "25/8/93",1

To display a freshly fitted parameter on the plot with the data and the fitted function, do this after the fit, but
before the plot:

set label sprintf("a = %3.5g",par_a) at 30,15
bfit = gprintf("b = %s*10^%S",par_b)
set label bfit at 30,20

To display a function definition along with its fitted parameters, use:
f(x)=a+b*x
fit f(x) 'datafile' via a,b
set label GPFUN_f at graph .05,.95
set label sprintf("a = %g", a) at graph .05,.90
set label sprintf("b = %g", b) at graph .05,.85

To set a label displaced a little bit from a small point:
set label 'origin' at 0,0 point lt 1 pt 2 ps 3 offset 1,-1

To set a label whose color matches the z value (in this case 5.5) of some point on a 3D splot colored using
pm3d:

set label 'text' at 0,0,5.5 tc palette z

gnuplot 6.1 221

Hypertext

Some terminals (wxt, qt, svg, canvas, win) allow you to attach hypertext to specific points on the graph or
elsewhere on the canvas. When the mouse hovers over the anchor point, a pop-up box containing the text is
displayed. Terminals that do not support hypertext will display nothing. You must enable the point attribute
of the label in order for the hypertext to be anchored. Enhanced text markup is not applied to hypertext labels.
Examples:

set label at 0,0 "Plot origin" hypertext point pt 1
plot 'data' using 1:2:0 with labels hypertext point pt 7 \

title 'mouse over point to see its order in data set'

mousing over any point of this pm3d surface will display
its Z coordinate as hypertext
splot '++' using 1:2:(F($1,$2)) with pm3d, \

'++' using 1:2:(F($1,$2)):(sprintf("%.3f", F($1,$2))) with labels \
hypertext point lc rgb "0xff000000" notitle

For the wxt and qt terminals, left-click on a hypertext anchor after the text has appeared will copy the hypertext
to the clipboard.

EXPERIMENTAL (implementation details may change) - Text of the form
"image{<xsize>,<ysize>}:<filename>{\n<caption text>}" will trigger display of the image file in
a pop-up box. The optional size overrides a default box size 300x200. The types of image file recognized may
vary by terminal type, but *.png should always work. Any additional text lines following the image filename
are displayed as usual for hypertext. Example:

set label 7 "image:../figures/Fig7_inset.png\nFigure 7 caption..."
set label 7 at 10,100 hypertext point pt 7

Linetype

The set linetype command allows you to redefine the basic linetypes used for plots. The command options are
identical to those for "set style line". Unlike line styles, redefinitions by set linetype are persistent. They are
not affected by reset. However the initial linetype properties are restored by reset session.

For example, whatever linetypes one and two look like to begin with, if you redefine them like this:
set linetype 1 lw 2 lc rgb "blue" pointtype 6
set linetype 2 lw 2 lc rgb "forest-green" pointtype 8

everywhere that uses lt 1 will now get a thick blue line. This includes uses such as the definition of a temporary
linestyle derived from the base linetype 1. Similarly lt 2 will now produce a thick green line.

This mechanism can be used to define a set of personal preferences for the sequence of lines used in gnuplot.
The recommended way to do this is to add to the run-time initialization file ̃/.gnuplot a sequence of commands
like

set linetype 1 lc rgb "dark-violet" lw 2 pt 1
set linetype 2 lc rgb "sea-green" lw 2 pt 7
set linetype 3 lc rgb "cyan" lw 2 pt 6 pi -1
set linetype 4 lc rgb "dark-red" lw 2 pt 5 pi -1
set linetype 5 lc rgb "blue" lw 2 pt 8
set linetype 6 lc rgb "dark-orange" lw 2 pt 3
set linetype 7 lc rgb "black" lw 2 pt 11
set linetype 8 lc rgb "goldenrod" lw 2
set linetype cycle 8

222 gnuplot 6.1

Every time you run gnuplot the line types will be initialized to these values. Youmay initialize as many linetypes
as you like. If you do not redefine, say, linetype 3 then it will continue to have the default properties (in this
case blue, pt 3, lw 1, etc).

Similar script files can be used to define theme-based color choices, or sets of colors optimized for a particular
plot type or output device.

The command set linetype cycle 8 tells gnuplot to re-use these definitions for the color and linewidth of higher-
numbered linetypes. That is, linetypes 9-16, 17-24, and so on will use this same sequence of colors and widths.
The point properties (pointtype, pointsize, pointinterval) are not affected by this command. unset linetype
cycle disables this feature. If the line properties of a higher numbered linetype are explicitly defined, this takes
precedence over the recycled low-number linetype properties.

Link

Syntax:
set link {x2 | y2} {via <expression1> inverse <expression2>}
unset link

The set link command establishes a mapping between the x and x2 axes, or the y and y2 axes. <expression1>
maps primary axis coordinates onto the secondary axis. <expression2>maps secondary axis coordinates onto
the primary axis.

Examples:
set link x2

This is the simplest form of the command. It forces the x2 axis to have identically the same range, scale, and
direction as the x axis. Commands set xrange, set x2range, set auto x, etc will affect both the x and x2 axes.

set link x2 via x**2 inverse sqrt(x)
plot "sqrt_data" using 1:2 axes x2y1, "linear_data" using 1:2 axes x1y1

This command establishes forward and reverse mapping between the x and x2 axes. The forward mapping is
used to generate x2 tic labels and x2 mouse coordinate The reverse mapping is used to plot coordinates given
in the x2 coordinate system. Note that the mapping as given is valid only for x non-negative. When mapping
to the y2 axis, both <expression1> and <expression2> must use y as dummy variable.

Lmargin

The command set lmargin sets the size of the left margin. Please see set margin (p. 224) for details.

Loadpath

The loadpath setting defines additional locations for data and command files searched by the call, load, plot
and splot commands. If a file cannot be found in the current directory, the directories in loadpath are tried.

Syntax:
set loadpath {"pathlist1" {"pathlist2"...}}
show loadpath

gnuplot 6.1 223

Path names may be entered as single directory names, or as a list of path names separated by a platform-specific
path separator, eg. colon (’:’) on Unix, semicolon (’;’) on DOS/Windows/OS/2 platforms. The show loadpath,
save and save set commands replace the platform-specific separator with a space character (’ ’).

If the environment variable GNUPLOT_LIB is set, its contents are appended to loadpath. However, show
loadpath prints the contents of set loadpath and GNUPLOT_LIB separately. Also, the save and save set
commands ignore the contents of GNUPLOT_LIB.

Locale

The locale setting determines the language with which {x,y,z}{d,m}tics will write the days and months.

Syntax:
set locale {"<locale>"}

<locale> may be any language designation acceptable to your installation. See your system documentation
for the available options. The command set locale "" will try to determine the locale from the LC_TIME,
LC_ALL, or LANG environment variables.

To change the decimal point locale, see set decimalsign (p. 199). To change the character encoding to the
current locale, see set encoding (p. 202).

Logscale

Syntax:
set logscale <axes> {<base>}
unset logscale <axes>
show logscale

where <axes> may be any combinations of x, x2, y, y2, z, cb, and r in any order. <base> is the base of the
log scaling (default is base 10). If no axes are specified, the command affects all axes except r. The command
unset logscale turns off log scaling for all axes. Note that the ticmarks generated for logscaled axes are not
uniformly spaced. See set xtics (p. 282).

Examples:

To enable log scaling in both x and z axes:
set logscale xz

To enable scaling log base 2 of the y axis:
set logscale y 2

To enable z and color log axes for a pm3d plot:
set logscale zcb

To disable z axis log scaling:
unset logscale z

Macros

In this version of gnuplot macro substitution is always enabled. Tokens in the command line of the form
@<stringvariablename> will be replaced by the text string contained in <stringvariablename>. See substi-
tution (p. 83).

224 gnuplot 6.1

Mapping

If data are provided to splot in spherical or cylindrical coordinates, the set mapping command should be used
to instruct gnuplot how to interpret them.

Syntax:
set mapping {cartesian | spherical | cylindrical}

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three columns (or using entries). The first two
are interpreted as the azimuthal and polar angles theta and phi (or "longitude" and "latitude"), in the units
specified by set angles. The radius r is taken from the third column if there is one, or is set to unity if there is
no third column. The mapping is:

x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)

Note that this is a "geographic" spherical system, rather than a "polar" one (that is, phi is measured from the
equator, rather than the pole).

For a cylindrical coordinate system, the data again occupy two or three columns. The first two are interpreted
as theta (in the units specified by set angles) and z. The radius is either taken from the third column or set to
unity, as in the spherical case. The mapping is:

x = r * cos(theta)
y = r * sin(theta)
z = z

The effects of mapping can be duplicated with the using specifier of the splot command, but mapping may
be more convenient if many data files are to be processed. However even if mapping is used, using may still
be necessary if the data in the file are not in the required order.

mapping has no effect on plot. world.dem: mapping demos.

Margin

The margin is the distance between the plot border and the outer edge of the canvas. The size of the margin
is chosen automatically, but can be overridden by the set margin commands. show margin shows the current
settings. To alter the distance between the inside of the plot border and the data in the plot itself, see set offsets
(p. 237).

Syntax:
set lmargin {{at screen} <margin>}
set rmargin {{at screen} <margin>}
set tmargin {{at screen} <margin>}
set bmargin {{at screen} <margin>}
set margins <left>, <right>, <bottom>, <top>
show margin

The default units of <margin> are character heights or widths, as appropriate. A positive value defines the
absolute size of the margin. A negative value (or none) causes gnuplot to revert to the computed value. For
3D plots, only the left margin can be set using character units.

http://www.gnuplot.info/demo/world.html

gnuplot 6.1 225

The keywords at screen indicates that the margin is specified as a fraction of the full drawing area. This can
be used to precisely line up the corners of individual 2D and 3D graphs in a multiplot. This placement ignores
the current values of set origin and set size, and is intended as an alternative method for positioning graphs
within a multiplot.

Normally the margins of a plot are automatically calculated based on tics, tic labels, axis labels, the plot title,
the timestamp and the size of the key if it is outside the borders. If, however, tics are attached to the axes
(set xtics axis, for example), neither the tics themselves nor their labels will be included in either the margin
calculation or the calculation of the positions of other text to be written in the margin. This can lead to tic labels
overwriting other text if the axis is very close to the border.

Mark

The "set mark" command defines a mark identified by a tag value N that is an integer >= 0. Once defined,
the mark can either be used by plot style "with marks" or placed on subsequent plots by defining an object
using "set object mark marktype N". The "plot" or "set object" command may resize, rotate, or recolor the
mark so that a single mark definition can provide a family of symbols when rendered. See for examplemarks
examples parametric (p. 77).

Syntax:

set mark N empty creates an empty mark with default properties
set mark N empty {properties} creates an empty mark with the requested properties
set mark N <data> {properties} replaces the vertices and properties of mark N if it exists,

otherwise creates a new mark N with the requested vertices
and properties

set mark N append <data> adds new vertices to those already present in mark N

Mark properties may be set individually or provided in the same command as the mark data.

set mark N title "XXX" associate a title string with mark N
set mark N fillcolor <colorspec> associate a fillcolor with mark N
set mark N fillstyle <fillstyle> associate a fillstyle with mark N

The <data> portion of a set mark command is very similar to the <data> portion of a plot command.
Coordinates may be read from a file, a datablock, an array, or generated parametrically by sampling from
pseudofile ’+’. Details are described elsewhere. See marks data (p. 70).

Example:

array Square = [{-1,-1}, { 1,-1}, { 1, 1}, {-1, 1}, {-1,-1}]
set mark 101 Square title "Gray Box" fillcolor "gray" fillstyle solid noborder
set mark 102 Square title "Empty Blue Box" fillstyle empty border lc "blue"

If a mark is given a fillcolor and fillstyle when it is defined by set mark, these take precedence over any fill
properties in a plot or object that the mark appears in. If no fillstyle is given in set mark the mark will be
rendered with the style given in the plot command or set object if there is one, otherwise it will use the global
setting from set style fill.

Lines in the marks are drawn with the same color as the fillstyle border, if there is one. CAVEAT: If the mark
is stroked but the active fillstyle is "noborder", the line color may not be what you intended. It will probably
be black.

226 gnuplot 6.1

Micro

By default the "%c" format specifier for scientific notation used to generate axis tick labels uses a lower case
u as a prefix to indicate "micro" (10^-6). The set micro command tells gnuplot to use a different typographic
character (unicode U+00B5). The byte sequence used to represent this character depends on the current en-
coding. See format numeric (p. 205), encoding (p. 202).

If the current encoding default is not satisfactory, you can provide a character string that generates the desired
representation. This is mostly useful for latex terminals, for example

set micro "{\textmu}"

Minussign

Gnuplot uses the C language library routine sprintf() for most formatted input. However it also has its own
formatting routine gprintf() that is used to generate axis tic labels. The C library routine always use a hyphen
character (ascii \055) to indicate a negative number, as in -7. Many people prefer a different typographic minus
sign character (unicode U+2212) for this purpose, as in −7. The command

set minussign

causes gprintf() to use this minus sign character rather than a hyphen in numeric output. In a utf-8 locale this is
the multibyte sequence corresponding to unicode U+2212. In a Window codepage 1252 locale this is the 8-bit
character ALT+150 ("en dash"). The set minussign command will affect axis tic labels and any labels that
are created by explicitly invoking gprintf. It has no effect on other strings that contain a hyphen. See gprintf
(p. 46).

Note that this command is ignored when you are using any of the LaTeX terminals, as LaTeX has its own
mechanism for handling minus signs. It also is not necessary when using the postscript terminal because the
postscript prologue output by gnuplot remaps the ascii hyphen code \055 to a different glyph named minus.

Example (assumes utf8 locale):
set minus
A = -5
print "A = ",A # printed string will contain a hyphen
print gprintf("A = %g",A) # printed string will contain character U+2212
set label "V = -5" # label will contain a hyphen
set label sprintf("V = %g",-5) # label will contain a hyphen
set label gprintf("V = %g",-5) # label will contain character U+2212

Monochrome

Syntax:
set monochrome {linetype N <linetype properties>}

The set monochrome command selects an alternative set of linetypes that differ by dot/dash pattern or line
width rather than by color. This command replaces the monochrome option offered by certain terminal types
in earlier versions of gnuplot. For backward compatibility these terminal types now implicitly invoke "set
monochrome" if their own "mono" option is present. For example,

set terminal pdf mono

is equivalent to

gnuplot 6.1 227

set terminal pdf
set mono

Selecting monochrome mode does not prevent you from explicitly drawing lines using RGB or palette colors,
but see also set palette gray (p. 243). Six monochrome linetypes are defined by default. You can change their
properties or add additional monochrome linetypes by using the full form of the command. Changes made to
the monochrome linetypes do not affect the color linetypes and vice versa. To restore the usual set of color
linetypes, use either unset monochrome or set color.

Mouse

The command set mouse enables mouse actions for the current interactive terminal. It is by default.

There are two mouse modes. The 2D mode works for plot commands and for splot maps (i.e. set view with
z-rotation 0, 90, 180, 270 or 360 degrees, including set view map). In this mode the mouse position is tracked
and you can pan or zoom using the mouse buttons or arrow keys. Some terminals support toggling individual
plots on/off by clicking on the corresponding key title or on a separate widget.

For 3D graphs splot, the view and scaling of the graph can be changed with mouse buttons 1 and 2, respectively.
A vertical motion of Button 2 with the shift key held down changes the xyplane. If additionally to these buttons
the modifier <ctrl> is held down, the coordinate axes are displayed but the data are suppressed. This is useful
for large data sets. Mouse button 3 controls the azimuth of the z axis (see set view azimuth (p. 275)).

Syntax:

set mouse {doubleclick <ms>} {nodoubleclick}
{{no}zoomcoordinates}
{zoomfactors <xmultiplier>, <ymultiplier>}
{noruler | ruler {at x,y}}
{polardistance{deg|tan} | nopolardistance}
{format <string>}
{mouseformat <int> | <string> | function <f(x,y)>}
{{no}labels {"labeloptions"}}
{{no}zoomjump} {{no}verbose}

unset mouse

The options noruler and ruler switch the ruler off and on, the latter optionally setting the origin at the given
coordinates. While the ruler is on, the distance in user units from the ruler origin to the mouse is displayed
continuously. By default, toggling the ruler has the key binding ’r’.

The option polardistance determines if the distance between the mouse cursor and the ruler is also shown in
polar coordinates (distance and angle in degrees or tangent (slope)). This corresponds to the default key binding
’5’.

Choose the option labels to define persistent gnuplot labels using Button 2. The default is nolabels, which
makes Button 2 draw only a temporary label at the mouse position. Labels are drawn with the current setting
ofmouseformat. The labeloptions string is passed to the set label command. The default is "point pointtype
1" which will plot a small plus at the label position. Temporary labels will disappear at the next replot or
mouse zoom operation. Persistent labels can be removed by holding the Ctrl-Key down while clicking Button
2 on the label’s point. The threshold for how close you must be to the label is also determined by the pointsize.

If the option verbose is turned on the communication commands are shown during execution. This option can
also be toggled by hitting 6 in the driver’s window. verbose is off by default.

228 gnuplot 6.1

Press ’h’ in the driver’s window for a summary of the mouse and key bindings. This will also display user
defined bindings or hotkeys defined by the bind command. Note that user defined binding may override
default bindings. See also help for bind (p. 78).

Doubleclick

The doubleclick resolution is given in milliseconds and used for Button 1, which copies the current mouse
position to the clipboard on some terminals. The default value is 300 ms. Setting the value to 0 ms triggers
the copy on a single click.

Format

The set mouse format command specifies a format string for sprintf() which determines how the mouse cursor
[x,y] coordinates are printed to the plot window and to the clipboard. The default is "% #g".

This setting is superseded by "set mouse mouseformat".

Mouseformat

Syntax:

set mouse mouseformat i
set mouse mouseformat "custom format"
set mouse mouseformat function string_valued_function(x, y)

This command controls the format used to report the current mouse position. An integer argument selects one
of the format options in the table below. A string argument is used as a format for sprintf() in option 7 and
should contain two float specifiers, one for x and one for y.

Use of a custom function returning a string is EXPERIMENTAL. It allows readout of coordinate systems in
which inverse mapping from screen coordinates to plot coordinates requires joint consideration of both x and
y. See for example the map_projection demo.

Example:

set mouse mouseformat "mouse x,y = %5.2g, %10.3f"

Use set mouse mouseformat "" to turn this string off again.

The following formats are available:

0 default (same as 1)
1 axis coordinates 1.23, 2.45
2 graph coordinates (from 0 to 1) /0.00, 1.00/
3 x = timefmt y = axis [(as set by `set timefmt`), 2.45]
4 x = date y = axis [31. 12. 1999, 2.45]
5 x = time y = axis [23:59, 2.45]
6 x = date time y = axis [31. 12. 1999 23:59, 2.45]
7 format from `set mouse mouseformat <format-string>`
8 format from `set mouse mouseformat function <func>`

gnuplot 6.1 229

Scrolling

The mouse wheel adjusts x and y axis ranges in both 2D and 3D plots. Each adjustment increment is 10% of the
current range by default. This may be changed by set mouse zoomfactor <x-multiplier>, <y-multiplier>.

• <wheel-up> scrolls y and y2 axis ranges up by a fraction of the current range
• <wheel-down> scrolls y and y2 ranges down by a fraction of the current range
• <shift+wheel-up> scrolls left (decreases x and x2 ranges)
• <shift+wheel-down> scrolls right (increases x and x2 ranges)
• <control+wheel-up> zooms in around the current mouse position
• <control+wheel-down> zooms out around the current mouse position
• <shift+control+wheel-up> zooms in only along x and x2 (pinch)
• <shift+control+wheel-down> zooms out only along x and x2 (expand)

Zoom

Proportional zoom in/out around the current mouse position is controlled by the mouse wheel (see scrolling
(p. 229)).

Enlarging a selected region in a 2D plot is accomplished by holding down the left mouse button and dragging
the mouse to delineate a zoom region. The original plot can be restored by typing the ’u’ hotkey in the plot
window. Hotkeys ’p’ and ’n’ step back and forth through a history of zoom operations.

The option zoomcoordinates determines if the coordinates of the zoom box are drawn at the edges while
zooming. This is on by default.

If the option zoomjump is on, the mouse pointer will automatically offset a small distance after starting a zoom
region with button 3. This can be useful to avoid a tiny (or even empty) zoom region. zoomjump is off by
default.

Mttics

Minor tic marks around the perimeter of a polar plot are controlled by by set mttics. Please see set mxtics
(p. 231).

Multiplot

The command set multiplot places gnuplot in multiplot mode, in which several plots are placed next to each
other on the same page or screen window.

Syntax:
set multiplot

{ title <page title> {font <fontspec>} {enhanced|noenhanced} }
{ layout <rows>,<cols>
{rowsfirst|columnsfirst} {downwards|upwards}
{scale <xscale>{,<yscale>}} {offset <xoff>{,<yoff>}}
{margins <left>,<right>,<bottom>,<top>}
{spacing <xspacing>{,<yspacing>}}

230 gnuplot 6.1

}
set multiplot {next|previous}
unset multiplot

For some terminals, no plot is displayed until the command unset multiplot is given, which causes the entire
page to be drawn and then returns gnuplot to its normal single-plot mode. For other terminals, each separate
plot command produces an updated display.

The clear command is used to erase the rectangular area of the page that will be used for the next plot. This is
typically needed to inset a small plot inside a larger plot.

Any labels or arrows that have been defined will be drawn for each plot according to the current size and origin
(unless their coordinates are defined in the screen system). Just about everything else that can be set is applied
to each plot, too. If you want something to appear only once on the page, for instance a single time stamp,
you’ll need to put a set time/unset time pair around one of the plot, splot or replot commands within the set
multiplot/unset multiplot block.

The multiplot title is separate from the individual plot titles, if any. Space is reserved for it at the top of the
page, spanning the full width of the canvas.

The commands set origin and set size must be used to correctly position each plot if no layout is specified or
if fine tuning is desired. See set origin (p. 238) and set size (p. 257) for details of their usage.

Example:
set multiplot
set size 0.4,0.4
set origin 0.1,0.1
plot sin(x)
set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)
unset multiplot

This displays a plot of cos(x) stacked above a plot of sin(x).

set size and set origin refer to the entire plotting area used for each plot. Please also see set term size (p. 37).
If you want to have the axes themselves line up, you can guarantee that the margins are the same size with the
set margin commands. See set margin (p. 224) for their use. Note that the margin settings are absolute, in
character units, so the appearance of the graph in the remaining space will depend on the screen size of the
display device, e.g., perhaps quite different on a video display and a printer.

With the layout option you can generate simple multiplots without having to give the set size and set origin
commands before each plot: Those are generated automatically, but can be overridden at any time. With layout
the display will be divided by a grid with <rows> rows and <cols> columns. This grid is filled rows first or
columns first depending on whether the corresponding option is given in the multiplot command. The stack of
plots can grow downwards or upwards. Default is rowsfirst and downwards. The commands set multiplot
next and set multiplot previous are relevant only in the context of using the layout option. next skips the next
position in the grid, leaving a blank space. prev returns to the grid position immediately preceding the most
recently plotted position.

Each plot can be scaled by scale and shifted with offset; if the y-values for scale or offset are omitted, the
x-value will be used. unset multiplot will turn off the automatic layout and restore the values of set size and
set origin as they were before set multiplot layout.

Example:
set size 1,1

gnuplot 6.1 231

set origin 0,0
set multiplot layout 3,2 columnsfirst scale 1.1,0.9
[up to 6 plot commands here]
unset multiplot

The above example will produce 6 plots in 2 columns filled top to bottom, left to right. Each plot will have a
horizontal size of 1.1/2 and a vertical size of 0.9/3.

Another possibility is to set uniformmargins for all plots in the layout with options layoutmargins and spacing,
which must be used together. Withmargins you set the outer margins of the whole multiplot grid.

spacing gives the gap size between two adjacent subplots, and can also be given in character or screen units.
If a single value is given, it is used for both x and y direction, otherwise two different values can be selected.

If one value has no unit, the one of the preceding margin setting is used.

Example:
set multiplot layout 2,2 margins 0.1, 0.9, 0.1, 0.9 spacing 0.0

In this case the two left-most subplots will have left boundaries at screen coordinate 0.1, the two right-most
subplots will have right boundaries at screen coordinate 0.9, and so on. Because the spacing between subplots
is given as 0, their inner boundaries will superimpose.

Example:
set multiplot layout 2,2 margins char 5,1,1,2 spacing screen 0, char 2

This produces a layout in which the boundary of both left subplots is 5 character widths from the left edge
of the canvas, the right boundary of the right subplots is 1 character width from the canvas edge. The overall
bottom margin is one character height and the overall top margin is 2 character heights. There is no horizontal
gap between the two columns of subplots. The vertical gap between subplots is equal to 2 character heights.

Example:
set multiplot layout 2,2 columnsfirst margins 0.1,0.9,0.1,0.9 spacing 0.1
set ylabel 'ylabel'
plot sin(x)
set xlabel 'xlabel'
plot cos(x)
unset ylabel
unset xlabel
plot sin(2*x)
set xlabel 'xlabel'
plot cos(2*x)
unset multiplot

See also remultiplot (p. 180), new multiplots (p. 31), multiplot demo (multiplt.dem)

Mx2tics

Minor tic marks along the x2 (top) axis are controlled by set mx2tics. Please see set mxtics (p. 231).

Mxtics

Minor tic marks along the x axis are controlled by set mxtics. They can be turned off with unset mxtics.
Similar commands control minor tics along the other axes.

Syntax:

http://www.gnuplot.info/demo/multiplt.html

232 gnuplot 6.1

set mxtics <freq>
set mxtics default
set mxtics time <N> <units>
unset mxtics
show mxtics

The same syntax applies to mytics, mztics, mx2tics, my2tics, mrtics, mttics and mcbtics.

<freq> is the number of sub-intervals (NOT the number of minor tic marks) between major tics. The default
for a linear axis is either 2 (one mark) or 5 (four marks) depending on the spacing of the major tics.

default will return the number of minor ticks to its default value.

set mxtics time <N> <units> applies only when the major tics are set to time mode. See set mxtics time
(p. 232).

If the axis is logarithmic, the number of sub-intervals will be set to a reasonable number by default (based
upon the length of a decade). This will be overridden if <freq> is given. However the usual minor tics (2, 3,
..., 8, 9 between 1 and 10, for example) are obtained by setting <freq> to 10, even though there are but nine
sub-intervals.

To set minor tics at arbitrary positions, use the ("<label>"<pos><level>, ...) form of set {x|x2|y|y2|z}tics
with <label> empty and <level> set to 1.

The set m{x|x2|y|y2|z}tics commands work only when there are uniformly spaced major tics. If all major tics
were placed explicitly by set {x|x2|y|y2|z}tics, then minor tic commands are ignored. Implicit major tics and
explicit minor tics can be combined using set {x|x2|y|y2|z}tics and set {x|x2|y|y2|z}tics add.
Examples:

set xtics 0, 5, 10
set xtics add (7.5)
set mxtics 5

Major tics at 0,5,7.5,10, minor tics at 1,2,3,4,6,7,8,9
set logscale y
set ytics format ""
set ytics 1e-6, 10, 1
set ytics add ("1" 1, ".1" 0.1, ".01" 0.01, "10^-3" 0.001, \

"10^-4" 0.0001)
set mytics 10

Major tics with special formatting, minor tics at log positions

By default, minor tics are off for linear axes and on for logarithmic axes. They inherit the settings for axis|bor-
der and {no}mirror specified for the major tics. Please see set xtics (p. 282) for information about these.

Mxtics time

Syntax:
set mxtics time <N> {seconds|minutes|hours|days|weeks|months|years}

This is a new command option introduced in gnuplot version 6. It places minor tic marks exactly at some
integral number of time units rather than at some fraction of the major tic interval.

The new default is that minor tics are not generated if the major tics are in time mode (set xdata time or set
xtics time).

gnuplot 6.1 233

set mxtics or set mxtics <freq> can restore the pre-version 6 behavior but this was always problematic. For
example, automatic subdivision of a 72-year span placed major tics at 12-year intervals and minor tics at 5-year
intervals.

Using set mxtics time 2 years, however, will place a minor tic mark exactly at the start of alternate years. set
mxtics time 1 month will place tic marks exactly at 1 Jan, 1 Feb, 1 Mar, 1 Apr, ... even though those intervals
contain an unequal number of days.

My2tics

Minor tic marks along the y2 (right-hand) axis are controlled by set my2tics. Please see set mxtics (p. 231).

Mytics

Minor tic marks along the y axis are controlled by set mytics. Please see set mxtics (p. 231).

Mztics

Minor tic marks along the z axis are controlled by set mztics. Please see set mxtics (p. 231).

Nonlinear

Syntax:
set nonlinear <axis> via f(axis) inverse g(axis)
unset nonlinear <axis>

This command is similar to the set link command except that only one of the two linked axes is visible. The
hidden axis remains linear. Coordinates along the visible axis are mapped by applying g(x) to hidden axis
coordinates. f(x) maps the visible axis coordinates back onto the hidden linear axis. You must provide both
the forward and inverse expressions.

To illustrate how this works, consider the case of a log-scale x2 axis.
set x2ange [1:1000]
set nonlinear x2 via log10(x) inverse 10**x

This achieves the same effect as set log x2. The hidden axis in this case has range [0:3], obtained by calculating
[log10(xmin):log10(xmax)].

The transformation functions f() and g() must be defined using a dummy variable appropriate to the nonlinear
axis:

axis: x x2 dummy variable x
axis: y y2 dummy variable y
axis: z cb dummy variable z
axis: r dummy variable r

Example:
set xrange [-3:3]
set nonlinear x via norm(x) inverse invnorm(x)

234 gnuplot 6.1

This example establishes a probability-scaled ("probit") x axis, such that plotting the cumulative normal func-
tion Phi(x) produces a straight line plot against a linear y axis.

Example:
logit(p) = log(p/(1-p))
logistic(a) = 1. / (1. + exp(-a))
set xrange [.001 : .999]
set nonlinear y via logit(y) inverse logistic(y)
plot logit(x)

This example establishes a logit-scaled y axis such that plotting logit(x) on a linear x axis produces a straight
line plot.

Example:
f(x) = (x <= 100) ? x : (x < 500) ? NaN : x-390
g(x) = (x <= 100) ? x : x+390
set xrange [0:1000] noextend
set nonlinear x via f(x) inverse g(x)
set xtics add (100,500)
plot sample [x=1:100] x, [x=500:1000] x

This example creates a "broken axis". X coordinates 0-100 are at the left, X coordinates 500-1000 are at the
right, there is a small gap (10 units) between them. So long as no data points with (100< x< 500) are plotted,
this works as expected.

Object

The set object command defines a single object which will appear in subsequent plots. You may define as
many objects as you like. Currently the supported object types are rectangle, circle, ellipse, and polygon.
Rectangles inherit a default set of style properties (fill, color, border) from those set by the command set style
rectangle. Every object can be given individual style properties when it is defined or in a later command.

Objects to be drawn in 2D plots may be defined in any combination of axis, graph, polar, or screen coordinates.
Object specifications in 3D plots cannot use graph coordinates. Rectangles and ellipses in 3D plots are limited
to screen coordinates.

Syntax:
set object <index>

<object-type> <object-properties>
{front|back|behind|depthorder}
{clip|noclip}
{fc|fillcolor <colorspec>} {fs <fillstyle>}
{default} {lw|linewidth <width>} {dt|dashtype <dashtype>}

unset object <index>

<object-type> is either rectangle, ellipse, circle, polygon, or mark. Each object type has its own set of
characteristic properties.

The options front, back, behind control whether the object is drawn before or after the plot itself. See layers
(p. 68). Setting front will draw the object in front of all plot elements, but behind any labels that are also
marked front. Setting back will place the object behind all plot curves and labels. Setting behind will place
the object behind everything including the axes and back rectangles, thus

set object rectangle from screen 0,0 to screen 1,1 behind

gnuplot 6.1 235

can be used to provide a colored background for the entire graph or page.

By default, objects are clipped to the graph boundary unless one ormore vertices are given in screen coordinates.
Setting noclip will disable clipping to the graph boundary, but will still clip against the screen size.

The fill color of the object is taken from the <colorspec>. fillcolor may be abbreviated fc. The fill style is
taken from <fillstyle>. See colorspec (p. 65) and fillstyle (p. 261). If the keyword default is given, these
properties are inherited from the default settings at the time a plot is drawn. See set style rectangle (p. 265).

Rectangle

Syntax:
set object <index> rectangle

{from <position> {to|rto} <position> |
center <position> size <w>,<h> |
at <position> size <w>,<h>}

The position of the rectangle may be specified by giving the position of two diagonal corners (bottom left and
top right) or by giving the position of the center followed by the width and the height. In either case the positions
may be given in axis, graph, or screen coordinates. See coordinates (p. 38). The options at and center are
synonyms.

Examples:
Force the entire area enclosed by the axes to have background color cyan
set object 1 rect from graph 0, graph 0 to graph 1, graph 1 back
set object 1 rect fc rgb "cyan" fillstyle solid 1.0

Position a red square with lower left at 0,0 and upper right at 2,3
set object 2 rect from 0,0 to 2,3 fc lt 1

Position an empty rectangle (no fill) with a blue border
set object 3 rect from 0,0 to 2,3 fs empty border rgb "blue"

Return fill and color to the default style but leave vertices unchanged
set object 2 rect default

Rectangle corners specified in screen coordinates may extend beyond the edge of the current graph. Otherwise
the rectangle is clipped to fit in the graph.

Ellipse

Syntax:
set object <index> ellipse {at|center} <position> size <w>,<h>

{angle <orientation>} {units xy|xx|yy}
{<other-object-properties>}

The position of the ellipse is specified by giving the center followed by the width and the height (actually the
major and minor axes). The keywords at and center are synonyms. The center position may be given in axis,
graph, or screen coordinates. See coordinates (p. 38). The major and minor axis lengths must be given in axis
coordinates. The orientation of the ellipse is specified by the angle between the horizontal axis and the major
diameter of the ellipse. If no angle is given, the default ellipse orientation will be used instead (see set style
ellipse (p. 265)). The units keyword controls the scaling of the axes of the ellipse. units xy means that the
major axis is interpreted in terms of units along the x axis, while the minor axis in that of the y axis. units xx

236 gnuplot 6.1

means that both axes of the ellipses are scaled in the units of the x axis, while units yy means that both axes
are in units of the y axis. The default is xy or whatever set style ellipse units was set to.

NB: If the x and y axis scales are not equal, (e.g. units xy is in effect) then the major/minor axis ratio will no
longer be correct after rotation.

Note that set object ellipse size <2r>,<2r> does not in general produce the same result as set object circle
<r>. The circle radius is always interpreted in terms of units along the x axis, and will always produce a circle
even if the x and y axis scales are different and even if the aspect ratio of your plot is not 1. If units is set to
xy, then ’set object ellipse’ interprets the first <2r> in terms of x axis units and the second <2r> in terms of
y axis units. This will only produce a circle if the x and y axis scales are identical and the plot aspect ratio is
1. On the other hand, if units is set to xx or yy, then the diameters specified in the ’set object’ command will
be interpreted in the same units, so the ellipse will have the correct aspect ratio, and it will maintain its aspect
ratio even if the plot is resized.

Circle

Syntax:
set object <index> circle {at|center} <position> size <radius>

{arc [<begin>:<end>]} {no{wedge}}
{<other-object-properties>}

The position of the circle is specified by giving the position of the center center followed by the radius. The
keywords at and center are synonyms. In 2D plots the position and radius may be given in any coordinate
system. See coordinates (p. 38). Circles in 3D plots cannot use graph coordinates. In all cases the radius is
calculated relative to the horizontal scale of the axis, graph, or canvas. Any disparity between the horizontal
and vertical scaling will be corrected for so that the result is always a circle. If you want to draw a circle in
plot coordinates (such that it will appear as an ellipse if the horizontal and vertical scales are different), use set
object ellipse instead.

By default a full circle is drawn. The optional qualifier arc specifies a starting angle and ending angle, in degrees,
for one arc of the circle. The arc is always drawn counterclockwise.

See also set style circle (p. 264), set object ellipse (p. 235).

Mark

Syntax:
set object <index> mark marktype <tag> at <position>

{scale <s>|<sx>,<sy>} {angle <a>}
{units ps|xy|xx|yy|gxy|gxx|gyy}
{<other-object-properties>}

The marktype is used to specify the tag number of a mark defined using the set mark command. The "mark-
type" keyword may be shortened to "mt". "at <position>" specifies the center of the mark. The center
position may be given in axis, graph, or screen coordinates. See coordinates (p. 38). "scale" is a multiplier
applied to x and y coordinates in the body of the mark. "angle" applies a rotation in degrees about the center
position.

The "units" option specifies what coordinate system is used to interpret [x,y] values stored in the mark defini-
tion by set mark. It does not affect the center position given by "at".

gnuplot 6.1 237

ps : both of x and y in units close to pointsize (default)
xy : x in units of the x axis and y in units of the y axis
xx : both of x and y in units of the x axis
yy : both of x and y in units of the y axis
gxy : x and y in % of the horizontal and vertical graph range
gxx : both of x and y in % of the horizontal graph range
gyy : both of x and y in % of the vertical graph range

As with other object types, a mark object may have additional properties for front/back/behind, fill color and
style, and line attributes. Note that the fill color and style of the object may be different from those of the mark
it contains. See marks data (p. 70).

Polygon

Syntax:

set object <index> polygon
from <position> to <position> ... {to <position>}

or
from <position> rto <position> ... {rto <position>}

The position of the polygon may be specified by giving the position of a sequence of vertices. These may be
given in any coordinate system. If relative coordinates are used (rto) then the coordinate type must match that
of the previous vertex. See coordinates (p. 38).

Example:
set object 1 polygon from 0,0 to 1,1 to 2,0
set object 1 fc rgb "cyan" fillstyle solid 1.0 border lt -1

Depthorder The option set object N depthorder applies to 3D polygon objects only. Rather than assigning
the object to layer front/back/behind it is included in the list of pm3d quadrangles sorted and rendered in order
of depth by set pm3d depthorder. As with pm3d surfaces, two-sided coloring can be generated by specifying
the object fillcolor as a linestyle. In this case the ordering of the first three vertices in the polygon determines
the "side".

If you set this property for an object that is not a 3D polygon it probably will not be drawn at all.

Offsets

Autoscaling sets the x and y axis ranges to match the coordinates of the data that is plotted. Offsets provide a
mechanism to expand these ranges to leave empty space between the data and the plot borders. Autoscaling
then further extends each range to reach the next axis tic unless this has been suppressed by set autoscale
noextend or set xrange noextend. See noextend (p. 185). Offsets affect only scaling for the x1 and y1 axes.

Syntax:
set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets

Each offset may be a constant or an expression. Each defaults to 0. By default, the left and right offsets are
given in units of the first x axis, the top and bottom offsets in units of the first y axis. Alternatively, you may

238 gnuplot 6.1

specify the offsets as a fraction of the total graph dimension by using the keyword "graph". Only "graph"
offsets are possible for nonlinear axes.

A positive offset expands the axis range in the specified direction, e.g. a positive bottom offset makes ymin
more negative. Negative offsets interact badly with autoscaling and clipping.

Example:

set autoscale noextend
set offsets graph 0.05, 0, 2, 2
plot sin(x)

This graph of sin(x) will have y range [-3:3] because the function will be autoscaled to [-1:1] and the vertical
offsets add 2 at each end of the range. The x range will be [-11:10] because the default is [-10:10] and it has
been expanded to the left by 0.05 of that total range.

Origin

The set origin command is used to specify the origin of a plotting surface (i.e., the graph and its margins) on
the screen. The coordinates are given in the screen coordinate system (see coordinates (p. 38) for information
about this system).

Syntax:

set origin <x-origin>,<y-origin>

Output

Syntax:

set output {"<filename>"}
unset output
show output

Graphs produced by non-interactive terminals are by default sent to stdout. The set output command redirects
output to the specified file or device. The file opened by this command remains open until a subsequent set/unset
output command, a change in terminal type, or exit from gnuplot.

Interactive terminals ignore set output.

The filename must be enclosed in quotes. If the filename is omitted, the command is equivalent to unset
output; any output file opened by a previous set output will be closed and new output will be sent to stdout.

When both set terminal and set output are used together, it is safest to give set terminal first, because some
terminals set a flag which is needed in some operating systems. This would be the case, for example, if the
operating system needs a separate open command for binary files.

On platforms that support pipes, it may be useful to pipe terminal output. For instance,

set output "|lpr -Plaser filename"
set term png; set output "|display png:-"

On MSDOS machines, set output "PRN" directs output to the default printer.

gnuplot 6.1 239

Overflow

Syntax:
set overflow {float | NaN | undefined}
unset overflow

This version of gnuplot supports 64-bit integer arithmetic. This means that for values from 2^53 to 2^63
(roughly 10^16 to 10^19) integer evaluation preserves more precision than evaluation using IEEE 754 floating
point arithmetic. However unlike the IEEE floating point representation, which sacrifices precision to span a
total range of roughly [-10^307 : 10^307], integer operations that result in values outside the range [-2^63 :
2^63] overflow. The set overflow command lets you control what happens in case of overflow. See options
below.

set overflow is the same as set overflow float. It causes the result to be returned as a real number rather than
as an integer. This is the default.

The command unset overflow causes integer arithmetic overflow to be ignored. No error is shown. This may
be desirable if your platform allows only 32-bit integer arithmetic and you want to approximate the behaviour
of gnuplot versions prior to 5.4.

The reset command does not affect the state of overflow handling.

Earlier gnuplot versions were limited to 32-bit arithmetic and ignored integer overflow. Note, however, that
some built-in operators did not use integer arithmetic at all, even when given integer arguments. This included
the exponentiation operator N**M and the summation operator (see summation (p. 57)). These operations
now return an integer value when given integer arguments, making them potentially susceptible to overflow and
thus affected by the state of set overflow.

Float

If an integer arithmetic expression overflows the limiting range, [-2^63 : 2^63] for 64-bit integers, the result
is returned as a floating point value instead. This is not treated as an error. Example:

gnuplot> set overflow float
gnuplot> A = 2**62 - 1; print A, A+A, A+A+A
4611686018427387903 9223372036854775806 1.38350580552822e+19

NaN

If an integer arithmetic expression overflows the limiting range, [-2^63 : 2^63] for 64-bit integers, the result
is returned as NaN (Not a Number). This is not treated as an error. Example:

gnuplot> set overflow NaN
gnuplot> print 10**18, 10**19
1000000000000000000 NaN

Undefined

If an integer arithmetic expression overflows the limiting range, [-2^63 : 2^63] for 64-bit integers, the result
is undefined. This is treated as an error. Example:

gnuplot> set overflow undefined
gnuplot> A = 10**19

^
undefined value

240 gnuplot 6.1

Affected operations

The set overflow state affects the arithmetic operators

+ - * / **

and the built-in summation operation sum.

All of these operations will return an integer result if all of the arguments are integers, so long as no overflow
occurs during evaluation.

The set overflow state does not affect logical or bit operations

<< >> | ^ &

If overflow occurs at any point during the course of evaluating of a summation set overflow float will cause
the result to be returned as a real number even if the final sum is within the range of integer representation.

Palette

The palette is a set of colors, usually ordered as one or more stepped gradients, used to color pm3d surfaces, heat
maps, and other plot elements. Colors in the current palette are automatically mapped from plot coordinate
z values or from an extra data column of gray values. The current palette is shown by default in a separate
colorbox drawn next to plots that use plot style pm3d. The colorbox can be customized or disabled. See set
colorbox (p. 194). See also show palette (p. 292) and test palette (p. 303).

Syntax:

set palette
set palette {

{ gray | color }
{ gamma <gamma> }
{ rgbformulae <r>,<g>,

| defined { (<gray1> <color1> {, <grayN> <colorN>}...) }
| file '<filename>' {datafile-modifiers}
| colormap <colormap-name>
| functions <R>,<G>,

}
{ cubehelix {start <val>} {cycles <val>} {saturation <val>} }
{ viridis }
{ model { RGB | CMY | HSV {start <radians>} } }
{ positive | negative }
{ nops_allcF | ps_allcF }
{ maxcolors <maxcolors> }

}

A palette can be defined in several ways.

gnuplot 6.1 241

set palette rgbformulae 7,5,15 (this is the default)

set palette defined (0 "white", 1 "dark-red")

set palette cubehelix

set palette viridis

- Provide formulae for the red, green, and blue compo-
nents as a function of the gray value between 0 and 1.
Set palette rgbformulae allows you to choose from 36
predefined formulae. Set palette functions allows you
to define your own functions.
- Use set palette defined to specify one or more smooth
gradients, each spanning one segment of the total z range.
- Load a previously save palette into the current palette.
Set palette file reads a saved palette from a file. Set
palette colormap extracts the RGB components from a
saved colormap.
- Specify a named palette, perhaps with additional parameters to customize. The named palettes currently
provided are cubehelix (a customizable family of palettes) and viridis.

set palette (without options) restores the default values.

set palette negative inverts the direction of the palette, e.g. set palette viridis negative creates a gradient
from yellow to blue rather than from blue to yellow.

set palette gray switches to a grayscale palette. set palette color restores the most recent color palette.

In pm3d color surfaces the gray value of each small quadrangle is obtained by mapping the averaged z-
coordinate of its 4 corners from the range [min_z,max_z] into the range of grays, which is always [0:1]. The
palette maps that gray value into an RGB color.

Palette colors can be mentioned explicitly in a color specification (see colorspec (p. 65)). This is useful to
assign a palette color to an object or label.

The palette can be defined in any of three color spaces: RGB CMY HSV. See set palette model (p. 245). All
color component values in all color spaces are limited to [0,1].

Rgbformulae
set palette rgbformulae <function 1>, <function 2>, <function 3>

Despite its name, this option applies to all color spaces. You must specify one of 36 preset mapping functions
by number for each color component. The available functions are listed by show palette rgbformulae. The
default is set palette rgbformulae 7,5,15. In RGB space this uses function 7 to map the red component,
function 5 to map the green component, and function 15 to map the blue component. A negative function
number inverts the sense of that component by mapping f(1-gray) rather than f(gray).

ocean

rainbow

AFM hot

set palette model HSV rgbformulae 3,2,2

Some nice schemes in RGB color space

7,5,15 ... default (black-blue-red-yellow)
3,11,6 ... green-red-violet
23,28,3 ... ocean (green-blue-white)
21,22,23 ... hot (black-red-yellow-white)
30,31,32 ... black-blue-violet-yellow-white
33,13,10 ... rainbow (blue-green-yellow-red)
34,35,36 ... AFM hot (black-red-yellow-white)

A full color palette in HSV color space

3,2,2 ... red-yellow-green-cyan-blue-magenta-red

242 gnuplot 6.1

Defined

Gray-to-rgb mapping can be manually set by use of palette defined: A color gradient is defined and used to
give the rgb values. Such a gradient is a piecewise linear mapping from gray values in [0,1] to the RGB space
[0,1]x[0,1]x[0,1]. You must specify the gray values and the corresponding RGB values between which linear
interpolation will be done.

Syntax:
set palette defined { (<gray1> <color1> {, <grayN> <colorN>}...) }

where N ≥ 2 and<grayN> are gray values which are mapped to [0,1]. The corresponding rgb color<colorN>
can be specified in three different ways:

<color> := { <r> <g> | '<color-name>' | '#rrggbb' }

Either by three numbers (each in [0,1]) for red, green and blue, separated by whitespace, or the name of the
color in quotes or X style color specifiers also in quotes. You may freely mix the three types in a gradient
definition, but the named color "red" will be something strange if RGB is not selected as color space. Use
show colornames for a list of known color names.

The <gray> values must form an ascending sequence of real numbers; the sequence will be automatically
rescaled to [0,1].

set palette defined (without a gradient definition in braces) switches to RGB color space and uses a preset
full-spectrum color gradient. Use show palette gradient to display the gradient.

Examples:

To produce a gray palette (useless but instructive) use:
set palette model RGB
set palette defined (0 "black", 1 "white")

To produce a blue-to-yellow-to-red palette use (all equivalent):
set palette defined (0 "blue", 1 "yellow", 2 "red")
set palette defined (0 0 0 1, 1 1 1 0, 2 1 0 0)
set palette defined (0 "#0000ff", 1 "#ffff00", 2 "#ff0000")

Full color spectrum within HSV color space:
set palette model HSV
set palette defined (0 0 1 1, 1 1 1 1)
set palette defined (0 0 1 0, 1 0 1 1, 6 0.8333 1 1, 7 0.8333 0 1)

Full color HSV spectrum wrapping at some hue other than red
set palette model HSV start 0.15
set palette defined (0 0 1 1, 1 1 1 1)

To produce a palette with only a few, equally-spaced colors:
set palette model RGB maxcolors 4
set palette defined (0 "yellow", 1 "red")

’Traffic light’ palette (non-smooth color jumps at gray = 1/3 and 2/3).
set palette model RGB
set palette defined (0 "dark-green", 1 "green", \

1 "yellow", 2 "dark-yellow", \
2 "red", 3 "dark-red")

gnuplot 6.1 243

Functions
set palette functions <f1(gray)>, <f2(gray)>, <f3(gray)>

This option is like set palette rgbformulae except that you must provide an actual function for each color
component rather than the index of a preset function. The dummy parameter of each function, if any, must be
"gray". The function must map gray values in [0,1] to output values also in [0,1].

Examples:

To produce a full color palette use:
set palette model HSV functions gray, 1, 1

A nice black to gold palette:
set palette model RGB functions 1.1*gray**0.25, gray**0.75, 0

A gamma-corrected black and white palette
gamma = 2.2
map(gray) = gray**(1./gamma)
set palette model RGB functions map(gray), map(gray), map(gray)

Gray

set palette gray switches to a grayscale palette shading from 0.0 = black to 1.0 = white. set palette color is
an easy way to switch back from the gray palette to the last color mapping.

Cubehelix

The "cubehelix" option defines a family of palettes in which color (hue) varies around the standard color wheel
while the net perceived intensity increases monotonically as the gray value goes from 0 to 1.

D A Green (2011) http://arxiv.org/abs/1108.5083

start defines the starting point along the color wheel in radians. cycles defines how many color wheel cycles
span the palette range. Larger values of saturation produce more saturated color; saturation > 1 may lead
to clipping of the individual RGB components and to intensity becoming non-monotonic. The palette is also
affected by set palette gamma. The default values are

set palette cubehelix start 0.5 cycles -1.5 saturation 1
set palette gamma 1.5

Viridis
set palette viridis

The "viridis" palette is a (blue->yellow) gradient designed to accommodate users with impaired color vision.
Viridis was developed by Stéfan van der Walt and Nathaniel Smith. It features an approximately linear gradient
of perceived brightness (luminance). The colormap version used in gnuplot is based on

"Viridis - Colorblind-Friendly Color Maps for R", Garnier et al (2021)
https://CRAN.R-project.org/package=viridis

244 gnuplot 6.1

Colormap

set palette colormap<name> loads a defined gradient that was previously saved to a colormap. Alpha channel
information in the colormap, if any, will be lost when the color values are copied into the palette definition.
See colormap (p. 189).

File

set palette file is basically a set palette defined (<gradient>) where <gradient> is read from a datafile
or datablock. The color values may be provided either as a single 24-bit packed RGB integer (1 or 2 using
columns) or as three separate fractional R, G, B components (3 or 4 using columns). If no explicit gray value
is provided in the first input column, the line number is used; this generates equal spacing along the color axis.

The file is read as a normal data file, so all datafile modifiers can be used. Please note that R might actually be
H if HSV color space is selected.

Use show palette gradient to display the gradient.

Examples:

Read in a palette of RGB triples each in range [0,255]:
set palette file 'some-palette' using ($1/255):($2/255):($3/255)

Equidistant rainbow (blue-green-yellow-red) palette:
set palette model RGB file "-" using 1:2:3
0 0 1
0 1 0
1 1 0
1 0 0
e

Same thing using explicit gray intervals and packed RGB values:
set palette model RGB file "-" using 1:2
1 0x0000ff
2 0x00ff00
3 0xffff00
4 0xff0000
e

Binary palette files are supported as well, see binary general (p. 150). Example: put 64 triplets of R,G,B
doubles into file palette.bin and load it by

set palette file "palette.bin" binary record=64 using 1:2:3

Gamma correction

Automatic gamma correction via set palette gamma<gamma> can be done for gray maps (set palette gray)
and for the cubehelix color palette schemes. Gamma = 1 produces a linear ramp of intensity. See test palette
(p. 303).

For gray mappings, <gamma> defaults to 1.5 which is usually suitable.

The gamma correction is applied to the cubehelix color palette family, but not to other palette coloring schemes.
However, you may easily implement gamma correction for explicit color functions.

Example:

gnuplot 6.1 245

set palette model RGB
set palette functions gray**0.64, gray**0.67, gray**0.70

To use gamma correction with interpolated gradients specify intermediate gray values with appropriate colors.
Instead of

set palette defined (0 0 0 0, 1 1 1 1)

use e.g.
set palette defined (0 0 0 0, 0.5 .73 .73 .73, 1 1 1 1)

or even more intermediate points until the linear interpolation fits the "gamma corrected" interpolation well
enough.

Maxcolors

set palette maxcolors<N> limits the palette to N discrete colors selected from a continuous palette sampled
at equally spaced intervals. If you want unequal spacing of N discrete colors, use set palette defined instead
of a single continuous palette.

The primary use for this is to generate heat maps with discrete colors, each representing a range of values.

A second use is to handle terminals that support only a limited number of colors (e.g. 256 colors in gif or
sixel). The default gnuplot linetype colors use up some of these, further limiting the number available for
palette use. Thus a multiplot using multiple palettes could fail because the first palette has used all the available
color positions. You can mitigate this by restricting the number of colors used by each palette.

Color model
set palette model { RGB | CMY | HSV {start <radians>} }

Sometimes RGB color space is not the most convenient color space to work in. You may change the color
spacemodel to one ofRGB,HSV, CMY. RGB stands for Red, Green, Blue; CMY stands for Cyan, Magenta,
Yellow; HSV stands for Hue, Saturation, Value. In HSV space the full color wheel is traversed as H runs from
0 to 1, so H=0 and H=1 describe the same color. By default the cycle starts and ends at red. The optional
parameter start introduces an offset, so after set palette model HSV start 0.3 H=0 and H=1 both correspond
to green.

For more information on color models see: http://en.wikipedia.org/wiki/Color_space

Documentation for palette options was written for RGB color space, so please note that R really means "first
color component", which can be H or C depending on the actual color space in use.

Postscript

This section is only relevant to output from set term postscript color. When the palette is defined using
set palette rgbformulae, gnuplot writes a postscript implementation of the required analytical formulae as a
header just before a pm3d drawing (see /g and /cF definitions). Usually, it makes sense to write definitions of
only the 3 formulae used in the palette. This is the default option nops_allcF. The option ps_allcF instead
writes definitions of all 36 formulae. This allows you to edit the postscript file in order to have different palettes
for different surfaces in one graph.

If you write a pm3d surface to a postscript file, it may be possible to reduce the file size by running the awk
script pm3dCompress.awk afterward. If the data lies on a rectangular grid, even greater compression may be
possible using the awk script pm3dConvertToImage.awk. Both scripts are distributed with gnuplot. Usage:

http://en.wikipedia.org/wiki/Color_space

246 gnuplot 6.1

awk -f pm3dCompress.awk thefile.ps >smallerfile.ps
awk -f pm3dConvertToImage.awk thefile.ps >smallerfile.ps

Parametric

The set parametric command changes the meaning of plot (splot) from normal functions to parametric func-
tions. The command unset parametric restores the plotting style to normal, single-valued expression plotting.

Syntax:
set parametric
unset parametric
show parametric

For 2D plotting, a parametric function is determined by a pair of parametric functions operating on a parameter.
An example of a 2D parametric function would be plot sin(t),cos(t), which draws a circle (if the aspect ratio is
set correctly — see set size (p. 257)). gnuplot will display an error message if both functions are not provided
for a parametric plot.

For 3D plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a triplet of functions is
required. An example of a 3D parametric function would be cos(u)*cos(v),cos(u)*sin(v),sin(u), which draws
a sphere. gnuplot will display an error message if all three functions are not provided for a parametric splot.

The total set of possible plots is a superset of the simple f(x) style plots, since the two functions can describe the
x and y values to be computed separately. In fact, plots of the type t,f(t) are equivalent to those produced with
f(x) because the x values are computed using the identity function. Similarly, 3D plots of the type u,v,f(u,v)
are equivalent to f(x,y).

Note that the order the parametric functions are specified is xfunction, yfunction (and zfunction) and that each
operates over the common parametric domain.

Also, the set parametric function implies a new range of values. Whereas the normal f(x) and f(x,y) style
plotting assume an xrange and yrange (and zrange), the parametric mode additionally specifies a trange, urange,
and vrange. These ranges may be set directly with set trange, set urange, and set vrange, or by specifying
the range on the plot or splot commands. Currently the default range for these parametric variables is [-5:5].
Setting the ranges to something more meaningful is expected.

Paxis

Syntax:
set paxis <axisno> {range <range-options> | tics <tic-options>}
set paxis <axisno> label <label-options> { offset <radial-offset> }
show paxis <axisno> {range | tics}

The set paxis command is equivalent to the set xrange and set xtics commands except that it acts on one of the
axes p1, p2, ... used in parallel axis plots and spiderplots. See parallelaxes (p. 116), set xrange (p. 280), and
set xtics (p. 282). The normal options to the range and tics commands are accepted although not all options
make sense for parallel axis plots.

set paxis<axisno> label<label-options> is relevant to spiderplots but ignored otherwise. Axes of a parallel
axis plot can be labeled using the title option of the plot command, which generates an xtic label. Note that
this may require also set xtics.

The axis linetype properties are controlled using set style parallelaxis (p. 265).

gnuplot 6.1 247

Pixmap

Syntax:

set pixmap <index> {"filename" | colormap <name>}
at <position>
{width <w> | height <h> | size <w>,<h>}
{front|back|behind} {center}

show pixmaps
unset pixmaps
unset pixmap <index>

The set pixmap command is similar to set object in that it defines an object that will appear on subsequent
plots. The rectangular array of red/green/blue/alpha values making up the pixmap are read from a png, jpeg,
or gif file. The position and extent occupied by the pixmap in the gnuplot output may be specified in any
coordinate system (see coordinates (p. 38)). The coordinates given by at <position> refer to the lower left
corner of the pixmap unless keyword center is present.

If the x-extent of the rendered pixmap is set using width <x-extent> the aspect ratio of the original image
is retained and neither the aspect ratio nor the orientation of the pixmap changes with axis scaling or rotation.
Similarly if the y-extent is set using height <y-extent>. If both the x-extent and y-extent are given using size
<x-extent><y-extent> this overrides the original aspect ratio. If no size is set then the original size in pixels
is used (the effective size is then terminal-dependent).

Pixmaps are not clipped to the border of the plot. As an exception to the general behaviour of objects and
layers, a pixmap assigned to layer behind is rendered for only the first plot in a multiplot. This allows all panels
in a multiplot to share a single background pixmap.

Examples:

Use a gradient as the background for all plotting
Both x and y will be resized to fill the entire canvas
set pixmap 1 "gradient.png"
set pixmap 1 at screen 0, 0 size screen 1, 1 behind

Place a logo at the lower right of each page plotted
set pixmap 2 "logo.jpg"
set pixmap 2 at screen 0.95, 0 width screen 0.05 behind

Place a small image at some 3D coordinate
It will move as if attached to the surface being plotted
but will always face forward and remain upright
set pixmap 3 "image.png" at my_x, my_y, f(my_x,my_y) width screen .05
splot f(x,y)

Pixmap from colormap

Another use of pixmaps is to create a colorbox for a named palette, separate from the colorbox that is auto-
matically generated for the active main palette

set pixmap <index> colormap <name> at <position> size <width>, <height>

248 gnuplot 6.1

Pm3d

pm3d is an splot style for drawing palette-mapped 3d and 4d data as color/gray maps and surfaces. It allows
plotting gridded or non-gridded data without preprocessing. pm3d style options also affect solid-fill polygons
used to construct other 3D plot elements.

Syntax (the options can be given in any order):
set pm3d {

{ at <position> }
{ interpolate <steps/points in scan, between scans> }
{ scansautomatic | scansforward | scansbackward

| depthorder {base} }
{ flush { begin | center | end } }
{ ftriangles | noftriangles }
{ clip | clip1in | clip4in }
{ {no}clipcb }
{ corners2color

{ mean|geomean|harmean|rms|median|min|max|c1|c2|c3|c4 }
}
{ {no}lighting

{primary <fraction>} {specular <fraction>} {spec2 <fraction>}
}
{ {no}border {retrace} {<linestyle-options>}}
{ implicit | explicit }
{ map }

}
show pm3d
unset pm3d

Note that pm3d plots are plotted sequentially in the order given in the splot command. Thus earlier plots may
be obscured by later plots. To avoid this you can use the depthorder scan option.

The pm3d surfaces can be projected onto the top or bottom of the view box. See pm3d position (p. 250).
The following command draws three color surfaces at different altitudes:

set border 4095
set pm3d at s
splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t

See also help for set palette (p. 240), set cbrange (p. 291), set colorbox (p. 194), and the demo file
demo/pm3d.dem.

With pm3d (pm3d explicit)

Syntax
splot DATA using (x):(y):(z){:(color)} with pm3d

{ at <position>}
{fs|fillstyle <fillstyle>} {fc|fillcolor <colorspec>}
{zclip [zmin:zmax]}

The rendering properties of all pm3d surfaces are controlled using set pm3d (p. 248). By default the full
surface is rendered as a grid of quadrangles, each colored by the palette color mapped to that z coordinate.
If you provide a fourth input column, the palette mapping uses that value rather than z. See pm3d fillcolor
(p. 252), pm3d color_assignment (p. 252).

gnuplot 6.1 249

When you explicitly use with pm3d in the plot command rather than using another plot style while set pm3
implicit is active, additional rendering options are possible. This allows you to use separate coloring schemes
for different surfaces in the same plot.

gnuplot version introduces an option zclip that clips the generated surface smoothly at a pair of limiting z values.
The example below animates gradual removal of the top portion of a two-color 3D surface.

set style line 101 lc "gray"
set style line 102 lc "blue"
set pm3d depthorder
do for [i=0:N] {

splot f(x,y) with pm3d fillcolor ls 101 zclip [* : zmax-(i*delta)]
pause 0.2 # 1/5 second between animation frames

}

Pm3d implicit

A pm3d color surface is drawn if the splot command explicitly specifies with pm3d, if the data or function
style is set to pm3d globally, or if the pm3d mode is set pm3d implicit. For the latter two cases the pm3d
surface is draw in addition to the mesh produced by the style specified in the plot command. E.g.

splot 'fred.dat' with lines, 'lola.dat' with lines

would draw both a mesh of lines and a pm3d surface for each data set. If the option explicit is on (or implicit
is off) only plots specified by the with pm3d attribute are plotted with a pm3d surface, e.g.:

splot 'fred.dat' with lines, 'lola.dat' with pm3d

would plot ’fred.dat’ with lines (only) and ’lola.dat’ with a pm3d surface.

On gnuplot start-up, the mode is explicit. For historical and compatibility reasons, the commands set pm3d;
(i.e. no options) and set pm3d at X ... (i.e. at is the first option) change the mode to implicit. The command
set pm3d; sets other options to their default state.

If you set the default data or function style to pm3d, e.g.:
set style data pm3d

then the options implicit and explicit have no effect.

Algorithm

Let us first describe how a map/surface is drawn. The input data come from an evaluated function or from
an splot data file. Each surface consists of a sequence of separate scans (isolines). The pm3d algorithm fills
the region between two neighbouring points in one scan with another two points in the next scan by a gray (or
color) according to z-values (or according to an additional ’color’ column, see help for using (p. 167)) of these
4 corners; by default the 4 corner values are averaged, but this can be changed by the option corners2color.
In order to get a reasonable surface, the neighbouring scans should not cross and the number of points in the
neighbouring scans should not differ too much; of course, the best plot is with scans having same number of
points. There are no other requirements (e.g. the data need not be gridded). Another advantage is that the
pm3d algorithm does not draw anything outside of the input (measured or calculated) region.

Surface coloring works with the following input data:

1. splot of function or of data file with one or three data columns: The gray/color scale is obtained by mapping
the averaged (or corners2color) z-coordinate of the four corners of the above-specified quadrangle into the

250 gnuplot 6.1

range [min_color_z,max_color_z] of zrange or cbrange providing a gray value in the range [0:1]. This value
can be used directly as the gray for gray maps. The normalized gray value can be further mapped into a color
— see set palette (p. 240) for the complete description.

2. splot of data file with two or four data columns: The gray/color value is obtained by using the last-column
coordinate instead of the z-value, thus allowing the color and the z-coordinate be mutually independent. This
can be used for 4d data drawing.

Other notes:

1. The term ’scan’ referenced above is used more among physicists than the term ’iso_curve’ referenced in
gnuplot documentation and sources. You measure maps recorded one scan after another scan, that’s why.

2. The ’gray’ or ’color’ scale is a linear mapping of a continuous variable onto a smoothly varying palette of
colors. The mapping is shown in a rectangle next to the main plot. This documentation refers to this as a
"colorbox", and refers to the indexing variable as lying on the colorbox axis. See set colorbox (p. 194), set
cbrange (p. 291).

Lighting

Syntax:
set pm3d lighting {primary <frac>} {specular <frac>} {spec2 <frac>}
set pm3d spotlight {rgb <color>} {rot_x <angle>} {rot_z <angle>}

{Phong <value>} {default}

By default the colors assigned to pm3d objects are not dependent on orientation or viewing angle. This state
corresponds to set pm3d nolighting. The command set pm3d lighting selects a simple lighting model consist-
ing of a single fixed source of illumination contributing 50% of the overall lighting. The strength of this light
relative to the ambient illumination can be adjusted by set pm3d lighting primary <fraction>. Inclusion of
specular highlighting can be adjusted by setting a fractional contribution:

set pm3d lighting primary 0.50 specular 0.0 # no highlights
set pm3d lighting primary 0.50 specular 0.6 # strong highlights

Solid-color pm3d surfaces tend to look very flat without specular highlights.

Since highlights the primary source only affect one side of the surface, it may help to add illumination from
a second spotlight shining from another direction. The strength of this second spotlight is set by "spec2
<fraction>". The second spotlight is included in the lighting model only if spec2 is greater than zero. The
direction, color, and specular model is controlled by "set pm3d spotlight". Use and positioning of this spot-
light is illustrated in the interactive demo spotlight.dem. See also hidden_compare.dem (comparison of
hidden3d and pm3d treatment of solid-color surfaces)

Example:
set pm3d lighting primary 0.8 spec 0.4 spec2 0.4
set pm3d spot rgb "blue"

Position

The pm3d colored surface can be drawn at the true z position of the surface or projected onto the base plane
or the top plane. This is controlled by the at option with a string of up to 6 combinations of b, t and s. For
instance, at b plots at the bottom only, at st plots first at the surface and then on the top plane, while at bstbst
is unlikely to be useful.

http://www.gnuplot.info/demo/hidden_compare.html
http://www.gnuplot.info/demo/hidden_compare.html

gnuplot 6.1 251

Colored quadrangles are plotted one after another. That means later quadrangles can occlude or overlap the
previous ones. You may try to switch between scansforward and scansbackward to force the first scan of the
data to be plotted first or last. The default is scansautomatic where gnuplot makes a guess about scans order.
The depthorder option completely reorders the quadrangles by sorting on the distance from the viewpoint.
This allow to visualize even complicated surfaces; see pm3d depthorder (p. 251) for more details.

Scanorder
set pm3d {scansautomatic | scansforward | scansbackward | depthorder}

By default the quadrangles making up a pm3d solid surface are rendered in the order they are encountered along
the surface grid points. This order may be controlled by the options scansautomatic|scansforward|scans-
backward. These scan options are not in general compatible with hidden-surface removal.

If two successive scans do not have same number of points, then it has to be decided whether to start taking
points for quadrangles from the beginning of both scans (flush begin), from their ends (flush end) or to center
them (flush center). Note, that flush (center|end) are incompatible with scansautomatic: if you specify
flush center or flush end and scansautomatic is set, it is silently switched to scansforward.

If two subsequent scans do not have the same number of points, the option ftriangles specifies whether color
triangles are drawn at the scan tail(s) where there are not enough points in either of the scans. This can be used
to draw a smooth map boundary.

Gnuplot does not do true hidden surface removal for solid surfaces, but often it is sufficient to render the
component quadrangles in order from furthest to closest. This mode may be selected using the option

set pm3d depthorder

Note that the global option set hidden3d does not affect pm3d surfaces.

The depthorder option by itself tends to produce bad results when applied to the long thin rectangles gener-
ated by splot with boxes. It works better to add the keyword base, which performs the depth sort using the
intersection of the box with the plane at z=0. This type of plot is further improved by adding a lighting model.
Example:

set pm3d depthorder base
set pm3d lighting
set boxdepth 0.4
splot $DATA using 1:2:3 with boxes

Clipping

Syntax:
set pm3d {clip | clip1in | clip4in}
set pm3d {no}clipcb

The component quadrangles of a pm3d surface or other 3D object are by default smoothly clipped against the
current zrange. This is a change from earlier gnuplot versions. In 2D projection (set view map) this mode also
clips against xrange and yrange.

Alternatively, surfaces can be clipped by rendering whole quadrangles but only those with all 4 corners in-range
on x, y, and z (set pm3d clip4in), or only those with at least one corner in-range on x, y, and z (set pm3d
clip1in). The options clip, clip1in, and clip4in are mutually exclusive.

252 gnuplot 6.1

Separate from clipping based on spatial x, y, and z coordinates, quadrangles can be rendered or not based on
extreme palette color values. clipcb: (default) palette color values < cbmin are treated as cbmin; palette color
values > cbmax are treated as cbmax. noclipcb: quadrangles with color value outside cbrange are not drawn
at all.

Color_assignment

The default pm3d coloring assigns an individual color to each quadrangle of the surface grid. For alternative
coloring schemes that assign uniform color to the entire surface, see pm3d fillcolor (p. 252).

A single gray/color value (i.e. not a gradient) is assigned to each quadrangle. This value is calculated from the
z-coordinates the four quadrangle corners according to corners2color <option>. The value is then used to
select a color from the current palette. See set palette (p. 240). It is not possible to change palettes inside a
single splot command.

If a fourth column of data is provided, the coloring of individual quadrangles works as above except that the
color value is distinct from the z value. As a separate coloring option, the fourth data column may provide
instead an RGB color. See rgbcolor variable (p. 67). In this case the plotting command must be

splot ... using 1:2:3:4 with pm3d lc rgb variable

Notice that ranges of z-values and color-values for surfaces are adjustable independently by set zrange, set
cbrange, set log z, set log cb, etc.

Corners2color

The color of each quadrangle in a pm3d surface is assigned based on the color values of its four bounding
vertices. The options ’mean’ (default), ’geomean’, ’harmean, ’rms’, and ’median’ produce various kinds of surface
color smoothing, while options ’min’ and ’max’ choose minimal or maximal value, respectively. This may not
be desired for pixel images or for maps with sharp and intense peaks, in which case the options ’c1’, ’c2’, ’c3’
or ’c4’ can be used instead to assign the quadrangle color based on the z-coordinate of only one corner. Some
experimentation may be needed to determine which corner corresponds to ’c1’, as the orientation depends on
the drawing direction. Because the pm3d algorithm does not extend the colored surface outside the range of the
input data points, the ’c<j>’ coloring options will result in pixels along two edges of the grid not contributing
to the color of any quadrangle. For example, applying the pm3d algorithm to the 4x4 grid of data points in
script demo/pm3d.dem (please have a look) produces only (4-1)x(4-1)=9 colored rectangles.

Border
set pm3d border {retrace} {line-properties}
set pm3d noborder

This option draws bounding lines around each pm3d quadrangle as it is rendered. Additional line properties
(linetype, color, linewidth) are optional. By default the border is drawn as a solid black line with width 1.

set pm3d border retrace causes a border to be drawn in the same color as the quadrangle. In principle this
should give the same result as noborder, but some output modes can suffer from antialiasing artifacts between
adjacent filled quadrangles. Retracing the border hides these artifacts, at the cost of a larger output file.

Fillcolor
splot FOO with pm3d fillcolor <colorspec>

gnuplot 6.1 253

Plot style with pm3d accepts an optional fillcolor in the splot command. This specification is applied to the
entire pm3d surface. See colorspec (p. 65). Most fillcolor specifications will result in a single solid color, which
is hard to interpret visually unless there is also a lighting model present to distinguish surface components based
on orientation. See pm3d lighting (p. 250).

There are a few special cases. with pm3d fillcolor palette would produce the same result as the default pm3d
palette-based coloring, and is therefore not a useful option. with pm3d fillcolor linestyle N is more interesting.
This variant assigns distinct colors to the top and bottom of the pm3d surface, similar to the color scheme used
by gnuplot’s hidden3dmode. Linestyle N is used for the top surface; linestyle N+1 for the bottom surface. Note
that "top" and "bottom" depend on the scan order, so that the colors are inverted for pm3d scansbackward as
compared to pm3d scansforward. This coloring option works best with pm3d depthorder, however, which
unfortunately does not allow you to control the scan order so you may have to instead swap the colors defined
for linestyles N and N+1.

Interpolate

The option interpolate m,n will interpolate between grid points to generate a finer mesh. For data files, this
smooths the color surface and enhances the contrast of spikes in the surface. When working with functions,
interpolation makes little sense. It would usually make more sense to increase samples and isosamples.

For positive m and n, each quadrangle or triangle is interpolated m-times and n-times in the respective direction.
For negative m and n, the interpolation frequency is chosen so that there will be at least |m| and |n| points drawn;
you can consider this as a special gridding function.

Note: interpolate 0,0, will automatically choose an optimal number of interpolated surface points.

Note: Currently color interpolation is always linear, even if corners2color is set to a nonlinear scheme such as
the geometric mean.

Deprecated_options

The deprecated option set pm3d map was equivalent to set pm3d at b; set view map; set style data pm3d;
set style func pm3d;

The deprecated option set pm3d hidden3d N was equivalent to set pm3d border ls N.

Pointintervalbox

The pointinterval and pointnumber properties of a line type are used only in plot style linespoints. A negative
value of pointinterval or pointnumber, e.g. -N, means that before the selected set of point symbols are drawn
a box (actually circle) behind each point symbol is blanked out by filling with the background color. The
command set pointintervalbox controls the radius of this blanked-out region. It is a multiplier for the default
radius, which is equal to the point size. unset pointintervalbox draws no blanked-out region.

Pointsize

The set pointsize command scales the size of the points used in plots.

Syntax:
set pointsize <multiplier>

254 gnuplot 6.1

show pointsize

The default is a multiplier of 1.0. Larger pointsizes may be useful to make points more visible in bitmapped
graphics.

The pointsize of a single plot may be changed on the plot command. See plot with (p. 176) for details.

Please note that the pointsize setting is not supported by all terminal types.

Polar

The set polar command changes the meaning of the plot from rectangular coordinates to polar coordinates.

Syntax:
set polar
set polar grid <grid options>
unset polar
show polar

In polar coordinates, the dummy variable (t) represents an angle theta. The default range of t is [0:2*pi], or
[0:360] if degree units have been selected (see set angles (p. 183)).

The command unset polar changes the meaning of the plot back to the default rectangular coordinate system.

The set polar command affects only 2D plotting. See the set mapping (p. 224) command for analogous 3D
functionality.

While in polar coordinates the meaning of an expression in t is really r = f(t), where t is an angle of rotation.
The trange controls the domain (the angle) of the function. The r, x and y ranges control the extent of the graph
in the x and y directions. Each of these ranges, as well as the rrange, may be autoscaled or set explicitly. For
details, see set rrange (p. 256) and set xrange (p. 280).

Example:
set polar
plot t*sin(t)
set trange [-2*pi:2*pi]
set rrange [0:3]
plot t*sin(t)

The first plot uses the default polar angular domain of 0 to 2*pi. The radius and the size of the graph are scaled
automatically. The second plot expands the domain, and restricts the size of the graph to the area within 3
units of the origin. This has the effect of limiting x and y to [-3:3].

By default polar plots are oriented such that theta=0 is at the far right, with theta increasing counterclockwise.
You can change both the origin and the sense explicitly. See set theta (p. 269).

You may want to set size square to have gnuplot try to make the aspect ratio equal to unity, so that circles
look circular. Tic marks around the perimeter can be specified using set ttics. See also polar demos
(polar.dem)

and polar data plot (poldat.dem).

Polar grid

Syntax:

http://www.gnuplot.info/demo/polar.html
http://www.gnuplot.info/demo/polar.html
http://www.gnuplot.info/demo/poldat.html

gnuplot 6.1 255

set polar grid {<theta_segments>, <radial_segments>}
{ qnorm {<power>} | gauss | cauchy | exp | box | hann }
{ kdensity } { scale <scale> }
{theta [min:max]} {r [min:max]}

The polar grid settings are used in conjunction with the plot style with surface to generate a heat map from a
set of polar coordinate points. The surface consists of a grid filling a circle divided into segments formed by
discrete ranges on theta and r.

Each segment is assigned a value derived from the input set of individual scattered points [x,y,z] by applying a
filter operation. The default filter is qnorm 1, which averages each point’s z value weighted by the inverse of
the point’s distance from the center of that grid segment.

Alternative filter operations gauss, cauchy, exp, box, and hann are described in more detail elsewhere. See
dgrid3d (p. 200).

kdensity: This keyword tells the program to use the weighted sum of contributions from all points rather than
the weighted average.

scale: This scale facter (default 1.0) is applied to all distances prior to using them in the weighting calculation.

Masking: All input points are used to calculate grid values. The full gridded surface always spans theta range
[0:360] and the radial defined by autoscaling or by a previous set rrange command. However the portion of
the surface that actually appears in the plot can be restricted to a truncated wedge bounded by lower and upper
limits on theta and r. Theta limits must be given in degrees.

 50 100 150 200

For example the following commands will generate a plot
which is auto-scaled in size to show all input points. The
contributions of all input points are summed, not aver-
aged (kdensity), and only a wedge of the resulting grid-
ded surface is displayed.

set rrange [0:*]
set polar grid qnorm kdensity theta [0:190]
plot DATA with surface, DATA with points

Print

The set print command redirects the output of the print command.

Syntax:
set print
set print "-"
set print "<filename>" [append]
set print "|<shell_command>"
set print $datablock [append]

set print with no parameters restores output to <STDERR>. The <filename> "-" means <STDOUT>.
The append flag causes the file to be opened in append mode. A <filename> starting with "|" is opened as a
pipe to the <shell_command> on platforms that support piping.

The destination for print commands can also be a named data block. Data block names start with ’$’, see also
inline data (p. 63). When printing a string to a data block, embedded newline characters are expanded to
generate multiple data block entries.

256 gnuplot 6.1

Psdir

The set psdir <directory> command controls the search path used by the postscript terminal to find pro-
logue.ps and character encoding files. You can use this mechanism to switch between different sets of locally-
customized prolog files. The search order is

1) The directory specified by `set psdir`, if any
2) The directory specified by environmental variable GNUPLOT_PS_DIR
3) A built-in header or one from the default system directory
4) Directories set by `set loadpath`

Raxis

The commands set raxis and unset raxis toggle whether the polar axis is drawn separately from grid lines and
the x axis. If the minimum of the current rrange is non-zero (and not autoscaled), then a white circle is drawn
at the center of the polar plot to indicate that the plot lines and axes do not reach 0. The axis line is drawn using
the same line type as the plot border. See polar (p. 254), rrange (p. 256), rtics (p. 257), rlabel (p. 256), set
grid (p. 209).

Rgbmax

Syntax:
set rgbmax {1.0 | 255}
unset rgbmax

The red/green/blue color components of an rgbimage plot are by default interpreted as integers in the range
[0:255]. set rgbmax 1.0 tells the program that data values used to generate the color components of a plot
with rgbimage or rgbalpha are floating point values in the range [0:1]. unset rgbmax returns to the default
integer range [0:255].

Rlabel

This command places a label above the r axis. The label will be drawn whether or not the plot is in polar mode.
See set xlabel (p. 279) for additional keywords.

Rmargin

The command set rmargin sets the size of the right margin. Please see set margin (p. 224) for details.

Rrange

The set rrange command sets the range of the radial coordinate for a graph in polar mode. This has the effect
of setting both xrange and yrange as well. The resulting xrange and yrange are both [-(rmax-rmin) : +(rmax-
rmin)]. However if you later change the x or y range, for example by zooming, this does not change rrange, so
data points continue to be clipped against rrange. Unlike other axes, autoscaling the raxis always results in rmin
= 0. The reverse autoscaling flag is ignored. Note: Setting a negative value for rmin may produce unexpected
results.

gnuplot 6.1 257

Rtics

The set rtics command places tics along the polar axis. The tics and labels are drawn to the right of the origin.
The mirror keyword causes them to be drawn also to the left of the origin. See polar (p. 254), set xtics
(p. 282), and set mxtics (p. 231) for discussion of keywords.

Samples

Function plots are constructed by sampling the function at a given number of x values and drawing line segments
to connect the values f(x0)..f(x1)..f(x2)... The default sampling rate for functions, or for interpolating data,
may be changed by the set samples command. To change the sampling range for a particular component of a
plot or splot command, see plot sampling (p. 172).

Syntax:
set samples <samples_1> {,<samples_2>}
show samples

By default, sampling is set to 100 points. A higher sampling rate will produce more accurate plots, but will
take longer. This parameter has no effect on data file plotting unless one of the interpolation/approximation
options is used. See plot smooth (p. 162), set cntrparam (p. 191) and set dgrid3d (p. 200).

When a 2D graph is being done, only the value of <samples_1> is relevant.

When a surface plot is being done without the removal of hidden lines, the value of samples specifies the number
of samples that are to be evaluated for the isolines. Each iso-v line will have <sample_1> samples and each
iso-u line will have <sample_2> samples. If you only specify <samples_1>, <samples_2> will be set equal
to <samples_1>. See also set isosamples (p. 212).

Size

Syntax:
set size {{no}square | ratio <r> | noratio} {<xscale>,<yscale>}
show size

The <xscale> and <yscale> values are scale factors for the size of the plot, which includes the graph, labels,
and margins.

Historical note: In early versions of gnuplot some terminal types used set size to control also the size of the
output canvas; other terminal types did not. Now there are two distinct properties: ’set size’ and ’set term ...
size’.

set term<terminal_type> size<x units>,<y units> controls the size of the output file, or canvas. Please
see individual terminal documentation for the units of the size parameters. By default, the plot will fill this
canvas.

set size <xscale>, <yscale> scales the plot itself relative to the size of the canvas. Scale values less than 1.0
will cause the plot to not fill the entire canvas. Scale values larger than 1.0 will cause only a portion of the plot
to fit on the canvas. Setting scale values larger than 1 may cause problems on some terminal types.

ratio causes gnuplot to try to create a graph with an aspect ratio of <r> (the ratio of the y-axis length to the
x-axis length) within the portion of the plot specified by <xscale> and <yscale>.

258 gnuplot 6.1

The meaning of a negative value for<r> is different. If<r>=-1, gnuplot tries to set the scales so that the unit
length along on both the x and y axes is the same; i.e. they are isotropic. See also set isotropic (p. 212). This
is the 2D equivalent to the 3D command set view equal xy. If <r>=-2, the unit on y has twice the length of
the unit on x, and so on. See also set isotropic (p. 212).

The success of gnuplot in producing the requested aspect ratio depends on the terminal selected. The graph
area will be the largest rectangle of aspect ratio<r> that will fit into the specified portion of the output (leaving
adequate margins, of course).

set size square is a synonym for set size ratio 1.

Both noratio and nosquare return the graph to the default aspect ratio of the terminal, but do not return
<xscale> or <yscale> to their default values (1.0).

ratio and square have no effect on 3D plots, but do affect 3D projections created using set view map. See
also set view equal (p. 275), which forces the x and y axes of a 3D onto the same scale.

Examples:

To set the size so that the plot fills the available canvas:
set size 1,1

To make the graph half size and square use:
set size square 0.5,0.5

To make the graph twice as high as wide use:
set size ratio 2

Spiderplot

The set spiderplot command switches interpretation of coordinates to a polar system in which each data point
is mapped to a position along a radial axis. paxis 1 is always vertical; axes 2 to N proceed clockwise with even
spacing. The command must be issued prior to plotting. It has additional effects equivalent to

set style data spiderplot
unset border
unset tics
set key noautotitle
set size ratio 1.0

Use reset to restore these after plotting.

Style

Default plotting styles are chosen with the set style data and set style function commands. See plot with
(p. 176) for information about how to override the default plotting style for individual functions and data sets.
See plotting styles (p. 90) or plot with (p. 176) for a complete list of styles.

Syntax:
set style function <style>
set style data <style>
show style function
show style data

gnuplot 6.1 259

Default styles for specific plotting elements may also be set.

Syntax:
set style arrow <n> <arrowstyle>
set style boxplot <boxplot style options>
set style circle radius <size> {clip|noclip}
set style ellipse size <size> units {xy|xx|yy} {clip|noclip}
set style fill <fillstyle>
set style histogram <histogram style options>
set style line <n> <linestyle>
set style rectangle <object options> <linestyle> <fillstyle>
set style textbox {<n>} {opaque|transparent} {{no}border} {fillcolor}
set style watchpoint labels <label options>

Set style arrow

You can use set style arrow to define a set of arrow types. Each type has its own width, point type, color, etc
so that you can refer to them later by an index instead of repeating all the information at each invocation.

Syntax:
set style arrow <index> default
set style arrow <index> {nohead | head | backhead | heads}

{size <length>,<angle>{,<backangle>} {fixed}}
{filled | empty | nofilled | noborder}
{front | back}
{ {linestyle | ls <line_style>}
| {linetype | lt <line_type>}
{linewidth | lw <line_width}
{linecolor | lc <colorspec>}
{dashtype | dt <dashtype>} }

unset style arrow
show style arrow

<index> is an integer that identifies the arrowstyle.

If default is given all arrow style parameters are set to their default values.

If the linestyle <index> already exists, only the given parameters are changed while all others are preserved.
If not, all undefined values are set to the default values.

An arrow style invoked from a plot or splot command can include a data-dependent linecolor (lc variable or
lc rgb variable) that consumes an additional column of data in the corresponding using specification. In this
case the style is probably not useful for individual arrows created by set arrow.

Specifying nohead produces arrows drawn without a head — a line segment. This gives you yet another way
to draw a line segment on the plot. By default, arrows have one head. Specifying heads draws arrow heads on
both ends of the line.

Head size can be modified using size<length>,<angle> or size<length>,<angle>,<backangle>, where
<length> defines length of each branch of the arrow head and<angle> the angle (in degrees) they make with
the arrow. <Length> is in x-axis units; this can be changed by first, second, graph, screen, or character
before the <length>; see coordinates (p. 38) for details.

By default the size of the arrow head is reduced for very short arrows. This can be disabled using the fixed
keyword after the size command.

260 gnuplot 6.1

<backangle> is the angle (in degrees) the back branches make with the arrow (in the same direction as
<angle>). It is ignored if the style is nofilled.

Specifying filled produces filled arrow heads with a border line around the arrow head. Specifying noborder
produces filled arrow heads with no border. In this case the tip of the arrow head lies exactly on the endpoint
of the vector and the arrow head is slightly smaller overall. Dashed arrows should always use noborder, since
a dashed border is ugly. Not all terminals support filled arrow heads.

The line stylemay be selected from a user-defined list of line styles (see set style line (p. 263)) ormay be defined
here by providing values for <line_type> (an index from the default list of styles) and/or <line_width>
(which is a multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its properties (type and width) cannot be
altered merely by issuing another set style arrow command with the appropriate index and lt or lw.

If front is given, the arrows are written on top of the graphed data. If back is given (the default), the arrow is
written underneath the graphed data. Using front will prevent a arrow from being obscured by dense data.

Examples:

To draw an arrow without an arrow head and double width, use:
set style arrow 1 nohead lw 2
set arrow arrowstyle 1

See also set arrow (p. 183) for further examples.

Boxplot

The set style boxplot command allows you to change the layout of plots created using the boxplot plot style.

Syntax:
set style boxplot {range <r> | fraction <f>}

{{no}outliers} {pointtype <p>}
{candlesticks | financebars}
{medianlinewidth <width>}
{separation <x>}
{labels off | auto | x | x2}
{sorted | unsorted}

The box in the boxplot always spans the range of values from the first quartile to the third quartile of the data
points. The limit of the whiskers that extend from the box can be controlled in two different ways. By default
the whiskers extend from each end of the box for a range equal to 1.5 times the interquartile range (i.e. the
vertical height of the box proper). Each whisker is truncated back toward the median so that it terminates at a
y value belonging to some point in the data set. Since there may be no point whose value is exactly 1.5 times
the interquartile distance, the whisker may be shorter than its nominal range. This default corresponds to

set style boxplot range 1.5

Alternatively, you can specify the fraction of the total number of points that the whiskers should span. In this
case the range is extended symmetrically from the median value until it encompasses the requested fraction of
the data set. Here again each whisker is constrained to end at a point in the data set. To span 95% of the points
in the set

set style boxplot fraction 0.95

gnuplot 6.1 261

Any points that lie outside the range of the whiskers are considered outliers. By default these are drawn as
individual circles (pointtype 7). The option nooutliers disables this. If outliers are not drawn they do not
contribute to autoscaling.

By default boxplots are drawn in a style similar to candlesticks, but you have the option of using instead a style
similar to finance bars.

A crossbar indicating the median is drawn using the same line type as box boundary. If you want a thicker line
for the median

set style boxplot medianlinewidth 2.0

If you want no median line, set this to 0.

If the using specification for a boxplot contains a fourth column, the values in that column will be interpreted
as a discrete category to which this data point belongs. In this case one boxplot is drawn for each category
found in the input. These boxplots will be drawn next to each other spaced by 1.0 along x (in x-axis units).
This spacing can be changed by the option set style boxplot separation.

The labels option governs how and where these boxplots (each representing a part of the dataset) are labeled.
By default the category identifier is used as a tick label on the horizontal axis – x or x2, depending on which
one is used for the plot itself. This setting corresponds to option labels auto. The labels can be forced to use
either of the x or x2 axes – options labels x and labels x2, respectively –, or they can be turned off altogether
with the option labels off.

By default the boxplots corresponding to different categories will be drawn in the same order the levels are
encountered in the data file. This behavior corresponds to the unsorted option. If the sorted option is active,
the category identifiers are first sorted alphabetically, and the boxplots are drawn in the sorted order.

The separation, labels, sorted and unsorted option only have an effect if a fourth column is given the plot
specification.

See boxplot (p. 93), candlesticks (p. 95), financebars (p. 101).

Set style data

The set style data command changes the default plotting style for data plots.

Syntax:
set style data <plotting-style>
show style data

See plotting styles (p. 90) for the choices. show style data shows the current default data plotting style.

Set style fill

The set style fill command is used to set the default style of the plot elements in plots with boxes, histograms,
candlesticks and filledcurves. This default can be superseded by fillstyles attached to individual plots. Note that
there is a separate default fill style for rectangles created by set obj. See set style rectangle (p. 265).

Syntax:
set style fill {empty

| {transparent} solid {<density>}
| {transparent} pattern {<n>}}

{border {lt} {lc <colorspec>} | noborder}

262 gnuplot 6.1

The default fillstyle is empty.

The solid option causes filling with a solid color. The <density> parameter specifies the saturation of the fill
color. At<density> 0.0 the box is white (or for some terminals background color). At<density> 1.0 the filled
area is the same color as the current line or fill color. Some terminal types can vary the saturation continuously;
others implement only a few levels of partial fill. If no <density> parameter is given, it defaults to 1.

transparent solid works similarly except that <density> is interpreted as an alpha value. Density 0.0 is fully
transparent; density 1.0 is solid fill.

The pattern option causes filling to be done with a fill pattern supplied by the terminal driver. The kind and
number of available fill patterns depend on the terminal driver. If multiple datasets using filled boxes are plotted,
the pattern cycles through all available pattern types, starting from pattern <n>, much as the line type cycles
for multiple line plots.

The empty option causes filled boxes not to be filled. This is the default.

Fill color (fillcolor <colorspec>) is distinct from fill style. I.e. plot elements or objects can share a fillstyle
while retaining separate colors. In most places where a fillstyle is accepted you can also specify a fill color.
Fillcolor may be abbreviated fc. Otherwise the fill color is take from the current linetype. Example:

plot FOO with boxes fillstyle solid 1.0 fillcolor "cyan"

Set style fill border The bare keyword border causes the filled object to be surrounded by a solid line of
the current linetype and color. You can change the color of this line by adding either a linetype or a linecolor.
noborder specifies that no bounding line is drawn. Examples:

Half-intensity fill, full intensity border in same color
set style fill solid 0.5 border
Half-transparent fill, solid black border (linetype -1)
set style fill transparent solid 0.5 border -1
Pattern fill in current color, border using color of linetype 5
plot ... with boxes fillstyle pattern 2 border lt 5
Fill area in cyan, border in blue
plot ... with boxes fillcolor "cyan" fs solid border linecolor "blue"

Note: The border property of a fill style only affects plots drawn with filledcurves in the default mode (closed
curve).

Set style fill transparent Some terminals support the attribute transparent for filled areas. In the case of
transparent solid fill areas, the density parameter is interpreted as an alpha value; that is, density 0 is fully
transparent, density 1 is fully opaque. In the case of transparent pattern fill, the background of the pattern is
either fully transparent or fully opaque.

Note that there may be additional limitations on the creation or viewing of graphs containing transparent fill
areas. For example, the png terminal can only use transparent fill if the "truecolor" option is set. Some pdf
viewers may not correctly display the fill areas even if they are correctly described in the pdf file. Ghostscript/gv
does not correctly display pattern-fill areas even though actual PostScript printers generally have no problem.

Set style function

The set style function command changes the default plotting style for function plots (e.g. lines, points, filled-
curves). See plotting styles (p. 90).

Syntax:

gnuplot 6.1 263

set style function <plotting-style>
show style function

Set style histogram

See histograms (p. 104).

Set style increment

By default, successive plots within the same graph will use successive linetypes. set style increment userstyles
changed this to step through successive user-defined line styles instead.

DEPRECATED. Instead use set linetype to redefine a convenient range of linetypes for the program to use.
See set linetype (p. 221).

Set style line

Each terminal has a default set of line and point types, which can be seen by using the command test. set style
line defines a set of line types and widths and point types and sizes so that you can refer to them later by an
index instead of repeating all the information at each invocation.

Syntax:
set style line <index> default
set style line <index> {{linetype | lt} <line_type> | <colorspec>}

{{linecolor | lc} <colorspec>}
{{linewidth | lw} <line_width>}
{{pointtype | pt} <point_type>}
{{pointsize | ps} <point_size>}
{{pointinterval | pi} <interval>}
{{pointnumber | pn} <max_symbols>}
{{dashtype | dt} <dashtype>}
{palette}

unset style line
show style line

default sets all line style parameters to those of the linetype with that same index.

If the linestyle <index> already exists, only the given parameters are changed while all others are preserved.
If not, all undefined values are set to the default values.

Line styles created by this mechanism do not replace the default linetype styles; both may be used. Line styles
are temporary. They are lost whenever you execute a reset command. To redefine the linetype itself, please
see set linetype (p. 221).

The line and point types default to the index value. The exact symbol that is drawn for that index value may
vary from one terminal type to another.

The line width and point size are multipliers for the current terminal’s default width and size (but note that
<point_size> here is unaffected by the multiplier given by the commandset pointsize).

The pointinterval controls the spacing between points in a plot drawn with style linespoints. The default is 0
(every point is drawn). For example, set style line N pi 3 defines a linestyle that uses pointtype N, pointsize
and linewidth equal to the current defaults for the terminal, and will draw every 3rd point in plots using with

264 gnuplot 6.1

linespoints. A negative value for the interval is treated the same as a positive value, except that some terminals
will try to interrupt the line where it passes through the point symbol.

The pointnumber property is similar to pointinterval except that rather than plotting every Nth point it limits
the total number of points to N.

Not all terminals support the linewidth and pointsize features; if not supported, the option will be ignored.

Terminal-independent colors may be assigned using either linecolor <colorspec> or linetype <colorspec>,
abbreviated lc or lt. This requires giving a RGB color triple, a known palette color name, a fractional index
into the current palette, or a constant value from the current mapping of the palette onto cbrange. See colors
(p. 64), colorspec (p. 65), set palette (p. 240), colornames (p. 194), cbrange (p. 291).

set style line <n> linetype <lt> will set both a terminal-dependent dot/dash pattern and color. The com-
mandsset style line<n> linecolor<colorspec> or set style line<n> linetype<colorspec> will set a new
line color while leaving the existing dot-dash pattern unchanged.

In 3d mode (splot command), the special keyword palette is allowed as a shorthand for "linetype palette z".
The color value corresponds to the z-value (elevation) of the splot, and varies smoothly along a line or surface.

Examples: Suppose that the default lines for indices 1, 2, and 3 are red, green, and blue, respectively, and the
default point shapes for the same indices are a square, a cross, and a triangle, respectively. Then

set style line 1 lt 2 lw 2 pt 3 ps 0.5

defines a new linestyle that is green and twice the default width and a new pointstyle that is a half-sized triangle.
The commands

set style function lines
plot f(x) lt 3, g(x) ls 1

will create a plot of f(x) using the default blue line and a plot of g(x) using the user-defined wide green line.
Similarly the commands

set style function linespoints
plot p(x) lt 1 pt 3, q(x) ls 1

will create a plot of p(x) using the default triangles connected by a red line and q(x) using small triangles
connected by a green line.

splot sin(sqrt(x*x+y*y))/sqrt(x*x+y*y) w l pal

creates a surface plot using smooth colors according to palette. Note, that this works only on some terminals.
See also set palette (p. 240), set pm3d (p. 248).

set style line 10 linetype 1 linecolor rgb "cyan"

will assign linestyle 10 to be a solid cyan line on any terminal that supports rgb colors.

Set style circle

Syntax:
set style circle {radius {graph|screen} <R>}

{{no}wedge}
{clip|noclip}

This command sets the default radius used in plot style "with circles". It applies to data plots with only 2
columns of data (x,y) and to function plots. The default is "set style circle radius graph 0.02". Nowedge
disables drawing of the two radii that connect the ends of an arc to the center. The default is wedge. This
parameter has no effect on full circles. Clip clips the circle at the plot boundaries, noclip disables this. Default
is clip.

gnuplot 6.1 265

Set style rectangle

Rectangles defined with the set object command can have individual styles. However, if the object is not
assigned a private style then it inherits a default that is taken from the set style rectangle command.

Syntax:
set style rectangle {front|back} {lw|linewidth <lw>}

{fillcolor <colorspec>} {fs <fillstyle>}

See colorspec (p. 65) and fillstyle (p. 261). fillcolor may be abbreviated as fc.

Examples:
set style rectangle back fc rgb "white" fs solid 1.0 border lt -1
set style rectangle fc linestyle 3 fs pattern 2 noborder

The default values correspond to solid fill with the background color and a black border.

Set style ellipse

Syntax:
set style ellipse {units xx|xy|yy}

{size {graph|screen} <a>, {{graph|screen} }}
{angle <angle>}
{clip|noclip}

This command governs whether the diameters of ellipses are interpreted in the same units or not. Default is
xy, which means that the major diameter (first axis) of ellipses will be interpreted in the same units as the x (or
x2) axis, while the minor (second) diameter in those of the y (or y2) axis. In this mode the ratio of the ellipse
axes depends on the scales of the plot axes and aspect ratio of the plot. When set to xx or yy, both axes of all
ellipses will be interpreted in the same units. This means that the ratio of the axes of the plotted ellipses will
be correct even after rotation, but either their vertical or horizontal extent will not be correct.

This is a global setting that affects all ellipses, both those defined as objects and those generated with the plot
command, however, the value of units can also be redefined on a per-plot and per-object basis.

It is also possible to set a default size for ellipses with the size keyword. This default size applies to data plots
with only 2 columns of data (x,y) and to function plots. The two values are interpreted as the major and minor
diameters (as opposed to semi-major and semi-minor axes) of the ellipse.

The default is "set style ellipse size graph 0.05,0.03".

Last, but not least it is possible to set the default orientation with the angle keyword. The orientation, which is
defined as the angle between the major axis of the ellipse and the plot’s x axis, must be given in degrees.

Clip clips the ellipse at the plot boundaries, noclip disables this. Default is clip.

For defining ellipse objects, see set object ellipse (p. 235); for the 2D plot style, see ellipses (p. 99).

Set style parallelaxis

Syntax:
set style parallelaxis {front|back} {line-properties}

Determines the line type and layer for drawing the vertical axes in plots with parallelaxes. See with paralle-
laxes (p. 116), set paxis (p. 246).

266 gnuplot 6.1

Set style spiderplot

Syntax:
set style spiderplot

{fillstyle <fillstyle-properties>}
{<line-properties> | <point-properties>}

This commands controls the default appearance of spider plots. The fill, line, and point properties can be
modified in the first component of the plot command. The overall appearance of the plot is also affected by
other settings such as set grid spiderplot. See also set paxis (p. 246), spiderplot (p. 120). Example:

Default spider plot will be a polygon with a thick border but no fill
set style spiderplot fillstyle empty border lw 3
This one will additionally place an open circle (pt 6) at each axis
plot for [i=1:6] DATA pointtype 6 pointsize 3

Set style textbox

Syntax:
set style textbox {<boxstyle-index>}

{opaque|transparent} {fillcolor <color>}
{{no}border {linecolor <colorspec>}}{linewidth <lw>}
{margins <xmargin>,<ymargin>}

This command controls the appearance of labels with the attribute ’boxed’. Terminal types that do not support
boxed text will ignore this style. Note: Implementation for some terminals (svg, latex) is incomplete. Most
terminals cannot place a box correctly around rotated text.

Three numbered textbox styles can be defined. If no boxstyle index <bs> is given, the default (unnumbered)
style is changed. Example:

default style has only a black border
set style textbox transparent border lc "black"
style 2 (bs 2) has a light blue background with no border
set style textbox 2 opaque fc "light-cyan" noborder
set label 1 "I'm in a box" boxed
set label 2 "I'm blue" boxed bs 2

Set style watchpoint

Syntax:
set style watchpoint nolabels
set style watchpoint labels {label-options}

The watchpoint target "mouse" always prints a label to the plot. Other watchpoint targets either print or do
not print a label depending on whether the style is set to label or nolabel.

The appearance of watchpoint labels can be customized using the full range of label properties available to
other gnuplot labels, including font, textcolor, point type and size of a point marking the exact x,y coordinates.
See set label (p. 218).

If no label string or label function is given in the plot command, the program autogenerates labels using the axis
tic formats for the current plot to produce the string " x-coordinate : y-coordinate". See watchpoint labels
(p. 88).

Examples:

gnuplot 6.1 267

set style watchpoint labels point pt 4 ps 2
set style watchpoint labels font ":Italic,6" textcolor "blue"
set style watchpoint labels boxed offset 1, 0.5

Surface

The set surface command is only relevant for 3D plots (splot).

Syntax:
set surface {implicit|explicit}
unset surface
show surface

unset surface will cause splot to not draw points or lines corresponding to any of the function or data file
points. This is mainly useful for drawing only contour lines rather than the surface they were derived from.
Contours may still be drawn on the surface, depending on the set contour option. To turn off the surface for an
individual function or data file while leaving others active, use the nosurface keyword in the splot command.
The combination unset surface; set contour base is useful for displaying contours on the grid base. See also
set contour (p. 195).

If a 3D data set is recognizable as a mesh (grid) then by default the program implicitly treats the plot style with
lines as requesting a gridded surface. See grid_data (p. 298). The command set surface explicit suppresses
this expansion, plotting only the individual lines described by separate blocks of data in the input file. A gridded
surface can still be plotted by explicitly requesting splot with surface.

Table

When table mode is enabled, plot and splot commands print out a multicolumn text table of values
X Y {Z} {color} <flag>

rather than creating an actual plot on the current terminal. The flag character is "i" if the point is in the active
range, "o" if it is out-of-range, or "u" if it is undefined. The data format is determined by the format of the
axis tickmarks (see set format (p. 204)), and the columns are separated by single spaces. This can be useful
if you want to generate contours and then save them for further use. The same method can be used to save
interpolated data (see set samples (p. 257) and set dgrid3d (p. 200)).

Syntax:
set table {"outfile" | $datablock} {append}

{separator {whitespace|tab|comma|"<char>"}}
plot <whatever>
unset table

Subsequent tabular output is written to "outfile", if specified, otherwise it is written to stdout or other current
value of set output. If outfile exists it will be replaced unless the append keyword is given. Alternatively,
tabular output can be redirected to a named data block. Data block names start with ’$’, see also inline data
(p. 63). You must explicitly unset table in order to go back to normal plotting on the current terminal.

Generally each line of tabular output from a plot command will show two values and a flag character: "X Y
flag". The output from an splot command will show "X Y Z flag". In either case if the command provides
an additional column of input data used for variable color, this extra column will also be shown in the output.

268 gnuplot 6.1

Certain plot styles such as with vectors will show additional values corresponding to the number of required
input data columns.

The separator character can be used to output csv (comma separated value) files. This mode only affects plot
style with table. See plot with table (p. 268).

Plot with table

This discussion applies only to the special plot style with table.

To avoid any style-dependent processing of the input data being tabulated (filters, smoothing, errorbar expan-
sion, secondary range checking, etc), or to increase the number of columns that can be tabulated, use the
keyword "table" instead of a normal plot style. In this case the output does not contain an extra column con-
taining a flag i, o, u indicating inrange/outrange/undefined. The destination for output must first be specified
with set table <where>. For example

set table $DATABLOCK1
plot <file> using 1:2:3:4:($5+$6):(func($7)):8:9:10 with table

Because there is no actual plot style in this case the columns do not correspond to specific axes. Therefore
xrange, yrange, etc are ignored.

If a using term evaluates to a string, the string is tabulated. Numerical data is always written with format %g.
If you want some other format use sprintf or gprintf to create a formatted string.

plot <file> using ("File 1"):1:2:3 with table
plot <file> using (sprintf("%4.2f",$1)) : (sprintf("%4.2f",$3)) with table

To create a csv file use
set table "tab.csv" separator comma
plot <foo> using 1:2:3:4 with table

To select only a subset of the data points for tabulation you can provide an input filter condition (if
<expression>) as part of the plot command.

plot <file> using 1:2:($4+$5) with table if (strcol(3) eq "Red")
plot <file> using 1:2:($4+$5) with table if (10. < $1 && $1 < 100.)
plot <file> using 1:2:($4+$5) with table if (filter($6,$7) != 0)

Terminal

gnuplot supports many different graphics devices. Use set terminal to tell gnuplot what kind of output to
generate. Use set output to redirect that output to a file or device.

Syntax:
set terminal <terminal-type> <options>
set terminal push
set terminal pop
show terminal

If <terminal-type> is omitted, gnuplot will list all available terminal types. There are many terminal-specific
options that may be specified when the terminal is set. See also termoption (p. 269).

If both set terminal and set output are used together, it is safest to give set terminal first, because in some
cases correct initialization of the output stream may require knowledge of the terminal type.

Example:

gnuplot 6.1 269

set terminal pdf font "Times,11" size 5in, 3in
set output "figure_1.pdf"
plot FILE1 with lines
set output "figure_2.pdf"
plot FILE2 with points
unset output

Caution: If the same terminal type is requested more than once in a session, some terminal-specific options
given in previous requests may need to be respecified.

The command set term push remembers the current terminal including its settings while set term pop restores
it together with all its previously selected options. This helps in printing, for instance, when switching among
different terminals — previous options don’t have to be repeated. When gnuplot is started, the default terminal
or that from startup file is pushed automatically. Therefore portable scripts can rely on set term pop to restore
the default terminal on a given platform unless another terminal has been pushed explicitly.

Example:

set terminal kitty anchor fontscale 0.5 size 700,500
load "myplot.gp"
set terminal push
set terminal pdf font "Times,11" size 5in, 3in
set output "myplot.pdf"
replot
unset output # Required! Must not write kitty output to a pdf file
set term pop # restore terminal kitty and options

For more information, see the complete list of terminals (p. 307).

Termoption

The set termoption command allows you to change the behaviour of the current terminal without requiring
a new set terminal command. Only one option can be changed per command, and only a small number of
options can be changed this way. Currently the only options accepted are

set termoption {no}enhanced
set termoption font "<fontname>{,<fontsize>}"
set termoption fontscale <scale>
set termoption {linewidth <lw>}{lw <lw>} {dashlength <dl>}{dl <dl>}
set termoption {pointscale <scale>} {ps <scale>}

Theta

Polar coordinate plots are by default oriented such that theta = 0 is on the right side of the plot, with theta
increasing as you proceed counterclockwise so that theta = 90 degrees is at the top. set theta allows you to
change the origin and direction of the polar angular coordinate theta.

set theta {right|top|left|bottom}
set theta {clockwise|cw|counterclockwise|ccw}

unset theta restores the default state "set theta right ccw".

270 gnuplot 6.1

Tics

The set tics command controls the tic marks and labels on all axes at once.

The tics may be turned off with the unset tics command, and may be turned on (the default state) with set tics.
Fine control of tics on individual axes is possible using the alternative commands set xtics, set ztics, etc.

Syntax:
set tics {axis | border} {{no}mirror}

{in | out} {front | back}
{{no}rotate {by <ang>}} {offset <offset> | nooffset}
{left | right | center | autojustify}
{format "formatstring"} {font "name{,<size>}"} {{no}enhanced}
{ textcolor <colorspec> }

set tics scale {default | <major> {,<minor>}}
unset tics
show tics

The options can be applied to a single axis (x, y, z, x2, y2, cb), e.g.
set xtics rotate by -90
unset cbtics

All tic marks are drawn using the same line properties as the plot border (see set border (p. 186)).

Set tics back or front applies to all axes at once, but only for 2D plots (not splot). It controls whether the tics
are placed behind or in front of the plot elements, in the case that there is overlap.

axis or border tells gnuplot to put the tics (both the tics themselves and the accompanying labels) along the
axis or the border, respectively. If the axis is very close to the border, the axis option will move the tic labels
to outside the border in case the border is printed (see set border (p. 186)). The relevant margin settings will
usually be sized badly by the automatic layout algorithm in this case.

mirror tells gnuplot to put unlabeled tics at the same positions on the opposite border. nomirror does what
you think it does.

in and out change the tic marks to be drawn inwards or outwards.

set tics scale controls the size of the tic marks. The first value <major> controls the auto-generated or user-
specifiedmajor tics (level 0). The second value controls the auto-generated or user-specifiedminor tics (level 1).
<major> defaults to 1.0,<minor> defaults to<major>/2. Additional values control the size of user-specified
tics with level 2, 3, ... Default tic sizes are restored by set tics scale default.

rotate asks gnuplot to rotate the text through 90 degrees, which will be done if the terminal driver in use
supports text rotation. norotate cancels this. rotate by<ang> asks for rotation by<ang> degrees, supported
by some terminal types.

The defaults are border mirror norotate for tics on the x and y axes, and border nomirror norotate for tics
on the x2 and y2 axes. For the z axis, the default is nomirror.

The <offset> is specified by either x,y or x,y,z, and may be preceded by first, second, graph, screen, or
character to select the coordinate system. <offset> is the offset of the tics texts from their default positions,
while the default coordinate system is character. See coordinates (p. 38) for details. nooffset switches off
the offset.

By default, tic labels are justified automatically depending on the axis and rotation angle to produce aesthetically
pleasing results. If this is not desired, justification can be overridden with an explicit left, right or center
keyword. autojustify restores the default behavior.

gnuplot 6.1 271

set tics with no options restores mirrored, inward-facing tic marks for the primary axes. All other settings are
retained.

See also set xtics (p. 282) for more control of major (labeled) tic marks and set mxtics for control of minor
tic marks. These commands provide control of each axis independently.

Ticslevel

Deprecated. See set xyplane (p. 287).

Ticscale

The set ticscale command is deprecated, use set tics scale instead.

Timestamp

The command set timestamp places the current time and date in the plot margin.

Syntax:

set timestamp {"<format>"} {top|bottom} {{no}rotate}
{offset <xoff>{,<yoff>}} {font "<fontspec>"}
{textcolor <colorspec>}

unset timestamp
show timestamp

The format string is used to write the date and time. Its default value is what asctime() uses: "%a %b %d
%H:%M:%S %Y" (weekday, month name, day of the month, hours, minutes, seconds, four-digit year). With
top or bottom you can place the timestamp along the top left or bottom left margin (default: bottom). rotate
writes the timestamp vertically. The constants <xoff> and <yoff> are offsets that let you adjust the position
more finely. is used to specify the font with which the time is to be written.

Example:

set timestamp "%d/%m/%y %H:%M" offset 80,-2 font "Helvetica"

See set timefmt (p. 271) for more information about time format strings.

Timefmt

This command sets the default format used to input time data. See set xdata time (p. 278), timecolumn
(p. 51).

Syntax:

set timefmt "<format string>"
show timefmt

The valid formats for both timefmt and timecolumn are:

272 gnuplot 6.1

Time Series timedata Format Specifiers
Format Explanation
%d day of the month, 1–31
%m month of the year, 1–12
%y year, 0–99
%Y year, 4-digit
%j day of the year, 1–365
%H hour, 0–24
%M minute, 0–60
%s seconds since the Unix epoch (1970-01-01 00:00 UTC)
%S second, integer 0–60 on output, (double) on input
%b three-character abbreviation of the name of the month
%B name of the month
%p two character match to one of: am AM pm PM

Any character is allowed in the string, but must match exactly. \t (tab) is recognized. Backslash-octals (\nnn)
are converted to char. If there is no separating character between the time/date elements, then %d, %m, %y,
%H,%M and%S read two digits each. If a decimal point immediately follows the field read by%S, the decimal
and any following digits are interpreted as a fractional second. %Y reads four digits. %j reads three digits. %b
requires three characters, and %B requires as many as it needs.

Spaces are treated slightly differently. A space in the string stands for zero or more whitespace characters in
the file. That is, "%H %M" can be used to read "1220" and "12 20" as well as "12 20".

Each set of non-blank characters in the timedata counts as one column in the using n:n specification. Thus
11:11 25/12/76 21.0 consists of three columns. To avoid confusion, gnuplot requires that you provide a
complete using specification if your file contains timedata.

If the date format includes the day or month in words, the format string must exclude this text. But it can still
be printed with the "%a", "%A", "%b", or "%B" specifier. gnuplot will determine the proper month and
weekday from the numerical values. See set format (p. 204) for more details about these and other options for
printing time data.

When reading two-digit years with %y, values 69-99 refer to the 20th century, while values 00-68 refer to the
21st century. NB: This is in accordance with the UNIX98 spec, but conventions vary widely and two-digit year
values are inherently ambiguous.

If the %p format returns "am" or "AM", hour 12 will be interpreted as hour 0. If the %p format returns
"pm" or "PM", hours < 12 will be increased by 12.

See also set xdata (p. 278) time/date (p. 86) and time_specifiers (p. 207) for more information.

Example:
set timefmt "%d/%m/%Y\t%H:%M"

tells gnuplot to read date and time separated by tab. (But look closely at your data — what began as a tab may
have been converted to spaces somewhere along the line; the format string must match what is actually in the
file.) See also time data demo.

Title

The set title command produces a plot title that is centered at the top of the plot. set title is a special case of
set label.

http://www.gnuplot.info/demo/timedat.html

gnuplot 6.1 273

Syntax:
set title {"<title-text>"} {offset <offset>} {font "{,<size>}"}

{{textcolor | tc} {<colorspec> | default}} {{no}enhanced}
show title

If<offset> is specified by either x,y or x,y,z the title is moved by the given offset. It may be preceded by first,
second, graph, screen, or character to select the coordinate system. See coordinates (p. 38) for details. By
default, the character coordinate system is used. For example, "set title offset 0,-1" will change only the y
offset of the title, moving the title down by roughly the height of one character. The size of a character depends
on both the font and the terminal.

 is used to specify the font with which the title is to be written; the units of the font <size> depend
upon which terminal is used.

textcolor<colorspec> changes the color of the text. <colorspec> can be a linetype, an rgb color, or a palette
mapping. See help for colorspec (p. 65) and palette (p. 47).

noenhanced requests that the title not be processed by the enhanced text mode parser, even if enhanced text
mode is currently active.

set title with no parameters clears the title.

See syntax (p. 85) for details about the processing of backslash sequences and the distinction between single-
and double-quotes.

Tmargin

The command set tmargin sets the size of the top margin. Please see set margin (p. 224) for details.

Trange

Syntax: set trange [tmin:tmax] The range of the parametric variable t is useful in three contexts.

• In parametric mode plot commands it limits the range of sampling for both generating functions. See
set parametric (p. 246), set samples (p. 257).

• In polar mode plot commands it limits or defines the acceptable range of the angular parameter theta
during input. Data points with theta value outside this range are excluded from the plot even if they
would otherwise lie inside the plot boundary. See polar (p. 254).

• In plot or splot commands using 1-dimensional sampled data via the pseudofile "+". See sampling 1D
(p. 172), special-filenames (p. 166).

Ttics

The set ttics command places tics around the perimeter of a polar plot. This is the border if set border polar
is enabled, otherwise the outermost circle of the polar grid drawn at the rightmost ticmark along the r axis. See
set grid (p. 209), set rtics (p. 257). The angular position is always labeled in degrees. The full perimeter can
be labeled regardless of the current trange setting. The desired range of the tic labels should be given as shown
below. Additional properties of the tic marks can be set. See xtics (p. 282).

set ttics -180, 30, 180
set ttics add ("Theta = 0" 0)
set ttics font ":Italic" rotate

274 gnuplot 6.1

Urange

Syntax: set urange [umin:umax] The range of the parametric variables u and v is useful in two contexts. 1)
splot in parametric mode. See set parametric (p. 246), set isosamples (p. 212). 2) generating 2-dimension
sampled data for either plot or splot using the pseudofile "++". See sampling 2D (p. 173).

Version

The show version command lists the version of gnuplot being run, its last modification date, the copyright hold-
ers, and email addresses for the FAQ, the gnuplot-info mailing list, and reporting bugs–in short, the information
listed on the screen when the program is invoked interactively.

Syntax:
show version {long}

Show version long also lists the operating system, configuration and compilation options used when this copy
of gnuplot was built.

Vgrid

Syntax:
set vgrid $gridname {size N}
unset vgrid $gridname
show vgrid

If the named grid already exists, mark it as active (use it for subsequent vfill and voxel operations). If a new
size is given, replace the existing content with a zero-filled N x N x N grid. If a grid with this name does not
already exist, allocate an N x N x N grid (default N=100), zero the contents, and mark it as active. Note that
grid names must begin with ’$’.

show vgrid lists all currently defined voxel grids. Example output:
$vgrid1: (active)

size 100 X 100 X 100
vxrange [-4:4] vyrange[-4:4] vzrange[-4:4]
non-zero voxel values: min 0.061237 max 94.5604
number of zero voxels: 992070 (99.21%)

unset vgrid $gridname releases all data structures associated with that voxel grid. The data structures are
also released by reset session. The function voxel(x,y,z) returns the value of the active grid point nearest that
coordinate. See also splot voxel-grids (p. 299).

View

The set view command sets the viewing angle for splots. It controls how the 3D coordinates of the plot are
mapped into the 2D screen space. It provides controls for both rotation and scaling of the plotted data, but
supports orthographic projections only. It supports both 3D projection or orthogonal 2D projection into a 2D
plot-like map.

Syntax:

gnuplot 6.1 275

set view <rot_x>{,{<rot_z>}{,{<scale>}{,<scale_z>}}}
set view map {scale <scale>}
set view projection {xy|xz|yz}
set view {no}equal {xy|xyz}
set view azimuth <angle>
show view

where<rot_x> and<rot_z> control the rotation angles (in degrees) in a virtual 3D coordinate system aligned
with the screen such that initially (that is, before the rotations are performed) the screen horizontal axis is x,
screen vertical axis is y, and the axis perpendicular to the screen is z. The first rotation applied is <rot_x>
around the x axis. The second rotation applied is <rot_z> around the new z axis.

Command set view map is used to represent the drawing as a map. It is useful for contour plots or 2D
heatmaps using pm3d mode rather than with image. In the latter case, take care that you properly use zrange
and cbrange for input data point filtering and color range scaling, respectively.

<rot_x> is bounded to the [0:180] range with a default of 60 degrees, while<rot_z> is bounded to the [0:360]
range with a default of 30 degrees. <scale> controls the scaling of the entire splot, while <scale_z> scales
the z axis only. Both scales default to 1.0.

Examples:
set view 60, 30, 1, 1
set view ,,0.5

The first sets all the four default values. The second changes only scale, to 0.5.

Azimuth
set view azimuth <angle-in-degrees>

The setting of azimuth affects the orientation of the z axis in a 3D graph (splot). At the default azimuth = 0
the z axis of the plot lies in the plane orthogonal to the screen horizontal. I.e. the projection of the z axis lies
along the screen vertical. Non-zero azimuth rotates the plot about the line of sight through the origin so that a
projection of the z axis is no longer vertical. When azimuth = 90 the z axis is horizontal rather than vertical.
During interactive viewing, hot-key z resets azimuth to 0.

Equal_axes

The command set view equal xy forces the unit length of the x and y axes to be on the same scale, and chooses
that scale so that the plot will fit on the page. The command set view equal xyz additionally sets the z axis scale
to match the x and y axes; however there is no guarantee that the z axis range will fit within the plot boundary.
See also set isotropic (p. 212). By default all three axes are scaled independently to fill the available area.

See also set xyplane (p. 287).

Projection

Syntax:
set view projection {xy|xz|yz}

Rotates the view angles of a 3D plot so that one of the primary planes xy, xz, or yz lies in the plane of the
plot. Axis label and tic positioning is adjusted accordingly; tics and labels on the third axis are disabled. The

276 gnuplot 6.1

plot is scaled up to approximately match the size that ’plot’ would generate for the same axis ranges. set view
projection xy is equivalent to set view map.

When the x and y coordinates used to specify objects, labels, arrows and other elements are both provided as
"graph" coordinates, then in projection views they are interpreted as "horizontal/vertical" rather than "x/y".

set key top right at graph 0.95, graph 0.95 # works in any projection

Vrange

Syntax: set vrange [vmin:vmax] The range of the parametric variables u and v is useful in two contexts. 1)
splot in parametric mode. See set parametric (p. 246), set isosamples (p. 212). 2) generating 2-dimension
sampled data for either plot or splot using the pseudofile "++". See sampling 2D (p. 173).

Vxrange

Syntax: set vxrange [vxmin:vxmax]

Establishes the range of x coordinates spanned by the active voxel grid. Analogous commands set vyrange and
set vzrange exist for the other two dimensions of the voxel grid. If no explicit ranges have been set prior to
the first vclear, vfill, or voxel(x,y,z) = command, vmin and vmax will be copied from the current values of
xrange.

Vyrange

See set vxrange (p. 276)

Vzrange

See set vxrange (p. 276)

Walls

Syntax:
set walls
set wall {x0|y0|z0|x1|y1} {<fillstyle>} {fc <fillcolor>}

 0
 2

 4 -2
 0

 2-10

-5

 0

 5

 10

3D surfaces drawn by splot (p. 293) lie within a normal-
ized unit cube regardless of the x y and z axis ranges. The
bounding walls of this cube are described by the planes
(graph coord x == 0), (graph coord x == 1), etc. The set
walls command renders the walls x0 y0 and z0 as solid
surfaces. By default these surfaces are semi-transparent
(fillstyle transparent solid 0.5). You can customize which
walls are drawn and also their individual color and fill
style. If you choose to enable walls, you may also want
to use set xyplane 0.

Example:

gnuplot 6.1 277

set wall x0; set wall y1; set wall z0 fillstyle solid 1.0 fillcolor "gray"
splot f(x,y) with pm3d fc "goldenrod"

Watchpoints

One or more watchpoints may be set for each component plot in a plot command. All watchpoint targets and
hits from the previous plot command are summarized by the command show watchpoints.

Example:
plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 watch y=0.75
show watchpoints

Plot title: "DATA using 1:2 smooth cnormal"
Watch 1 target y = 0.25 (1 hits)

hit 1 x 50.6 y 0.25
Watch 2 target y = 0.5 (1 hits)

hit 1 x 63.6 y 0.5
Watch 3 target y = 0.75 (1 hits)

hit 1 x 68.3 y 0.75

The coordinates of all points satisfying the first watchpoint (y=0.25) are stored in an array WATCH_1. The
points satisfying (y=0.5) are stored in an array WATCH_2, and so on.

Each hit is stored as a complex number with x as the real component and y as the imaginary component. So
the first hit of watchpoint 2 has x = real(WATCH_2[1]) y = imag(WATCH_2[1]). In this example only the x
coordinates of the hits are interesting, as the y coordinates will always match the corresponding target y value.
However if the watchpoint target is a z value or a function f(x,y), neither the x or the y coordinate of a hit is
known in advance.

X2data

The set x2data command sets data on the x2 (top) axis to timeseries (dates/times). Please see set xdata
(p. 278).

X2dtics

The set x2dtics command changes tics on the x2 (top) axis to days of the week. Please see set xdtics (p. 279)
for details.

X2label

The set x2label command sets the label for the x2 (top) axis. Please see set xlabel (p. 279).

X2mtics

The set x2mtics command changes tics on the x2 (top) axis to months of the year. Please see set xmtics
(p. 280) for details.

278 gnuplot 6.1

X2range

The set x2range command sets the horizontal range that will be displayed on the x2 (top) axis. See set xrange
(p. 280) for the full set of command options. See also set link (p. 222).

X2tics

The set x2tics command controls major (labeled) tics on the x2 (top) axis. Please see set xtics (p. 282) for
details.

X2zeroaxis

The set x2zeroaxis command draws a line at the origin of the x2 (top) axis (y2 = 0). For details, please see
set zeroaxis (p. 289).

Xdata

This command controls interpretation of data on the x axis. An analogous command acts on each of the other
axes.

Syntax:
set xdata {time}
show xdata

The same syntax applies to ydata, zdata, x2data, y2data and cbdata.

The time option signals that data represents a time/date in seconds. Gnuplot version 6 stores time to millisecond
precision.

set xdata (with no time keyword) restores data interpretation to normal.

Time

set xdata time indicates that the x coordinate represents a date or time to millisecond precision. There is an
analogous command set ydata time.

There are separate format mechanisms for interpretation of time data on input and output. Input data is read
from a file either by using the global timefmt or by using the function timecolumn() as part of the plot com-
mand. These input mechanisms also apply to using time values to set an axis range. See set timefmt (p. 271),
timecolumn (p. 51).

Example:
set xdata time
set timefmt "%d-%b-%Y"
set xrange ["01-Jan-2013" : "31-Dec-2014"]
plot DATA using 1:2

or
plot DATA using (timecolumn(1,"%d-%b-%Y")):2

gnuplot 6.1 279

For output, i.e. tick labels along that axis or coordinates output by mousing, the function ’strftime’ (type "man
strftime" on unix to look it up) is used to convert from the internal time in seconds to a string representation
of a date. gnuplot tries to figure out a reasonable format for this. You can customize the format using either
set format x or set xtics format. See time_specifiers (p. 207) for a special set of time format specifiers. See
also time/date (p. 86) for more information.

Xdtics

The set xdtics commands converts the x-axis tic marks to days of the week where 0=Sun and 6=Sat. Overflows
are converted modulo 7 to dates. set noxdtics returns the labels to their default values. Similar commands do
the same things for the other axes.

Syntax:
set xdtics
unset xdtics
show xdtics

The same syntax applies to ydtics, zdtics, x2dtics, y2dtics and cbdtics.

See also the set format (p. 204) command.

Xlabel

The set xlabel command sets the x axis label. Similar commands set labels on the other axes.

Syntax:
set xlabel {"<label>"} {offset <offset>} {font "{,<size>}"}

{textcolor <colorspec>} {{no}enhanced}
{rotate by <degrees> | rotate parallel | norotate}

show xlabel

The same syntax applies to x2label, ylabel, y2label, zlabel and cblabel.

If<offset> is specified by either x,y or x,y,z the label is moved by the given offset. It may be preceded by first,
second, graph, screen, or character to select the coordinate system. See coordinates (p. 38) for details. By
default, the character coordinate system is used. For example, "set xlabel offset -1,0" will change only the x
offset of the title, moving the label roughly one character width to the left. The size of a character depends on
both the font and the terminal.

 is used to specify the font in which the label is written; the units of the font<size> depend upon which
terminal is used.

noenhanced requests that the label text not be processed by the enhanced text mode parser, even if enhanced
text mode is currently active.

To clear a label, put no options on the command line, e.g., "set y2label".

The default positions of the axis labels are as follows:

xlabel: The x-axis label is centered below the bottom of the plot.

ylabel: The y-axis label is centered to the left of the plot, defaulting to either horizontal or vertical orientation
depending on the terminal type. The program may not reserve enough space to the left of the plot to hold long
non-rotated ylabel text. You can adjust this with set lmargin.

280 gnuplot 6.1

zlabel: The z-axis label is centered along the z axis and placed in the space above the grid level.

cblabel: The color box axis label is centered along the box and placed below or to the right according to
horizontal or vertical color box gradient.

y2label: The y2-axis label is placed to the right of the y2 axis. The position is terminal-dependent in the same
manner as is the y-axis label.

x2label: The x2-axis label is placed above the plot but below the title. It is also possible to create an x2-axis
label by using new-line characters to make a multi-line plot title, e.g.,

set title "This is the title\n\nThis is the x2label"

Note that double quotes must be used. The same font will be used for both lines, of course.

The orientation (rotation angle) of the x, x2, y and y2 axis labels in 2D plots can be changed by specifying
rotate by <degrees>. The orientation of the x and y axis labels in 3D plots defaults to horizontal but can be
changed to run parallel to the axis by specifying rotate parallel.

If you are not satisfied with the default position of an axis label, use set label instead–that command gives you
much more control over where text is placed.

Please see syntax (p. 85) for further information about backslash processing and the difference between single-
and double-quoted strings.

Xmtics

The set xmtics command converts the x-axis tic marks to months of the year where 1=Jan and 12=Dec.
Overflows are converted modulo 12 to months. The tics are returned to their default labels by unset xmtics.
Similar commands perform the same duties for the other axes.

Syntax:
set xmtics
unset xmtics
show xmtics

The same syntax applies to x2mtics, ymtics, y2mtics, zmtics and cbmtics.

See also the set format (p. 204) command.

Xrange

The set xrange command sets the horizontal range that will be displayed. A similar command exists for each
of the other axes, as well as for the polar radius r and the parametric variables t, u, and v.

Syntax:
set xrange [{{<min>}:{<max>}}] {{no}reverse} {{no}extend}

| restore
show xrange

where <min> and <max> terms are constants, expressions or an asterisk to set autoscaling. If the data are
time/date, you must give the range as a quoted string according to the set timefmt format. If <min> or
<max> is omitted the current value will not be changed. See below for full autoscaling syntax. See also
noextend (p. 185).

The same syntax applies to yrange, zrange, x2range, y2range, cbrange, rrange, trange, urange and vrange.

gnuplot 6.1 281

See set link (p. 222) for options that link the ranges of x and x2, or y and y2.

The reverse option reverses the direction of an autoscaled axis. For example, if the data values range from 10
to 100, it will autoscale to the equivalent of set xrange [100:10]. The reverse flag has no effect if the axis is
not autoscaled.

Autoscaling: If <min> (the same applies for correspondingly to <max>) is an asterisk "*" autoscaling is
turned on. The range in which autoscaling is being performed may be limited by a lower bound <lb> or an
upper bound <ub> or both. The syntax is

{ <lb> < } * { < <ub> }

For example,
0 < * < 200

sets <lb> = 0 and <ub> = 200. With such a setting <min> would be autoscaled, but its final value will be
between 0 and 200 (both inclusive despite the ’<’ sign). If no lower or upper bound is specified, the ’<’ to also
be omitted. If <ub> is lower than <lb> the constraints will be turned off and full autoscaling will happen.
This feature is useful to plot measured data with autoscaling but providing a limit on the range, to clip outliers,
or to guarantee a minimum range that will be displayed even if the data would not need such a big range.

The command set xrange restore overwrites the current range min and max with the values found during the
most recent autoscaling operation.

In 2D, xrange and yrange determine the extent of the axes, trange determines the range of the parametric
variable in parametric mode or the range of the angle in polar mode. Similarly in parametric 3D, xrange,
yrange, and zrange govern the axes and urange and vrange govern the parametric variables.

In polar mode, rrange determines the radial range plotted. <rmin> acts as an additive constant to the radius,
whereas <rmax> acts as a clip to the radius — no point with radius greater than <rmax> will be plotted.
xrange and yrange are affected — the ranges can be set as if the graph was of r(t)-rmin, with rmin added to
all the labels.

Any range may be partially or totally autoscaled, although it may not make sense to autoscale a parametric
variable unless it is plotted with data.

Ranges may also be specified on the plot command line. A range given on the plot line will be used for that
single plot command; a range given by a set command will be used for all subsequent plots that do not specify
their own ranges. The same holds true for splot.

Examples

Examples:

To set the xrange to the default:
set xrange [-10:10]

To set the yrange to increase downwards:
set yrange [10:-10]

To change zmax to 10 without affecting zmin (which may still be autoscaled):
set zrange [:10]

To autoscale xmin while leaving xmax unchanged:

282 gnuplot 6.1

set xrange [*:]

To autoscale xmin but keeping xmin positive:
set xrange [0<*:]

To autoscale x but keep minimum range of 10 to 50 (actual might be larger):
set xrange [*<10:50<*]

Autoscaling but limit maximum xrange to -1000 to 1000, i.e. autoscaling within [-1000:1000]
set xrange [-1000<*:*<1000]

Make sure xmin is somewhere between -200 and 100:
set xrange [-200<*<100:]

Extend

set xrange noextend is the same as set autoscale x noextend. See noextend (p. 185).

Writeback

The commands "set xrange writeback" and "set xrange nowriteback" are retained for backward compatibility,
but have had no effect on plotting since gnuplot version 5.2.4.

Xtics

Fine control of the major (labeled) tics on the x axis is possible with the set xtics command. The tics may
be turned off with the unset xtics command, and may be turned on (the default state) with set xtics. Similar
commands control the major tics on the y, z, x2 and y2 axes.

Syntax:
set xtics {axis | border} {{no}mirror}

{in | out} {scale {default | <major> {,<minor>}}}
{{no}rotate {by <ang>}} {offset <offset> | nooffset}
{left | right | center | autojustify}
{add}
{ autofreq
| <incr>
| <start>, <incr> {,<end>}
| ({"<label>"} <pos> {<level>} {,{"<label>"}...) }

{format "formatstring"} {font "name{,<size>}"} {{no}enhanced}
{ numeric | timedate | geographic }
{{no}logscale}
{ rangelimited }
{ textcolor <colorspec> }

unset xtics
show xtics

The same syntax applies to ytics, ztics, x2tics, y2tics and cbtics.

axis or border tells gnuplot to put the tics (both the tics themselves and the accompanying labels) along the
axis or the border, respectively. If the axis is very close to the border, the axis option will move the tic labels to

gnuplot 6.1 283

outside the border. The relevant margin settings will usually be sized badly by the automatic layout algorithm
in this case.

mirror tells gnuplot to put unlabeled tics at the same positions on the opposite border. nomirror does what
you think it does.

in and out change the tic marks to be drawn inwards or outwards.

With scale, the size of the tic marks can be adjusted. If <minor> is not specified, it is 0.5*<major>. The
default size 1.0 for major tics and 0.5 for minor tics is requested by scale default.

rotate asks gnuplot to rotate the text through 90 degrees, which will be done if the terminal driver in use
supports text rotation. norotate cancels this. rotate by<ang> asks for rotation by<ang> degrees, supported
by some terminal types.

The defaults are border mirror norotate for tics on the x and y axes, and border nomirror norotate for tics
on the x2 and y2 axes. For the z axis, the {axis | border} option is not available and the default is nomirror.
If you do want to mirror the z-axis tics, you might want to create a bit more room for them with set border.

The <offset> is specified by either x,y or x,y,z, and may be preceded by first, second, graph, screen, or
character to select the coordinate system. <offset> is the offset of the tics texts from their default positions,
while the default coordinate system is character. See coordinates (p. 38) for details. nooffset switches off
the offset.

Example:

Move xtics more closely to the plot.

set xtics offset 0,graph 0.05

To change the relative order of drawing axis tics and the plot itself, use the set grid command with options
’front’, ’back’ or ’layerdefault’. There is no option to assign different axis tics or grid lines to different layers.

By default, tic labels are justified automatically depending on the axis and rotation angle to produce aesthetically
pleasing results. If this is not desired, justification can be overridden with an explicit left, right or center
keyword. autojustify restores the default behavior.

set xtics with no options restores the default border or axis if xtics are being displayed; otherwise it has no
effect. Any previously specified tic frequency or position {and labels} are retained.

Tic positions are calculated automatically by default or if the autofreq option is given.

A series of tic positions can be specified by giving either a tic interval alone, or a start point, interval, and end
point (see xtics series (p. 284)).

Individual tic positions can be specified individually by providing an explicit list of positions, where each position
may have an associated text label. See xtics list (p. 284).

However they are specified, tics will only be plotted when in range.

Format (or omission) of the tic labels is controlled by set format, unless the explicit text of a label is included
in the set xtics ("<label>") form.

Minor (unlabeled) tics can be added automatically by the set mxtics command, or at explicit positions by the
set xtics ("" <pos> 1, ...) form.

The appearance of the tics (line style, line width etc.) is determined by the border line (see set border (p. 186)),
even if the tics are drawn at the axes.

284 gnuplot 6.1

Xtics series

Syntax:
set xtics <incr>
set xtics <start>, <incr>, <end>

The implicit<start>,<incr>,<end> form specifies that a series of tics will be plotted on the axis between the
values <start> and <end> with an increment of <incr>. If <end> is not given, it is assumed to be infinity.
The increment may be negative. If neither <start> nor <end> is given, <start> is assumed to be negative
infinity, <end> is assumed to be positive infinity, and the tics will be drawn at integral multiples of <incr>.
If the axis is logarithmic, the increment will be used as a multiplicative factor.

If you specify to a negative <start> or <incr> after a numerical value (e.g., rotate by <angle> or offset
<offset>), the parser fails because it subtracts <start> or <incr> from that value. As a workaround, specify
0-<start> resp. 0-<incr> in that case.

Example:
set xtics border offset 0,0.5 -5,1,5

Fails with ’invalid expression’ at the last comma. Use instead
set xtics border offset 0,0.5 0-5,1,5

or
set xtics offset 0,0.5 border -5,1,5

These place tics at the border, tics text with an offset of 0,0.5 characters, and sets the start, increment, and end
to -5, 1, and 5, as requested.

Examples:

Make tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.
set xtics 0,.5,10

Make tics at ..., -10, -5, 0, 5, 10, ...
set xtics 5

Make tics at 1, 100, 1e4, 1e6, 1e8.
set logscale x; set xtics 1,100,1e8

Xtics list

Syntax:
set xtics {add} ("label1" <pos1> <level1>, "label2" <pos2> <level2>, ...)

The explicit ("label"<pos><level>, ...) form allows arbitrary tic positions or non-numeric tic labels. In this
form, the tics do not need to be listed in numerical order. Each tic has a position, optionally with a label.

The label is a string enclosed by quotes or a string-valued expression. It may contain formatting information for
converting the position into its label, such as "%3f clients", or it may be the empty string "". See set format
(p. 204) for more information. If no string is given, the default label (numerical) is used.

An explicit tic mark has a third parameter, the level. The default is level 0, a major tic. Level 1 generates a
minor tic. Labels are never printed for minor tics. Major and minor tics may be auto-generated by the program
or specified explicitly by the user. Tics with level 2 and higher must be explicitly specified by the user, and take
priority over auto-generated tics. The size of tics marks at each level is controlled by the command set tics
scale.

Examples:

gnuplot 6.1 285

set xtics ("low" 0, "medium" 50, "high" 100)
set xtics (1,2,4,8,16,32,64,128,256,512,1024)
set ytics ("bottom" 0, "" 10, "top" 20)
set ytics ("bottom" 0, "" 10 1, "top" 20)

In the second example, all tics are labeled. In the third, only the end tics are labeled. In the fourth, the unlabeled
tic is a minor tic.

Normally if explicit tics are given, they are used instead of auto-generated tics. Conversely if you specify set
xtics auto or the like it will erase any previously specified explicit tics. You canmix explicit and auto- generated
tics by using the keyword add, which must appear before the tic style being added.

Example:
set xtics 0,.5,10
set xtics add ("Pi" 3.14159)

This will automatically generate tic marks every 0.5 along x, but will also add an explicit labeled tic mark at pi.

Xtics time

Times and dates are stored internally as a number of seconds.

Input: Non-numeric time and date values are converted to seconds on input using the format specifier in
timefmt. Axis range limits, tic placement, and plot coordinates may be given as quoted dates or times in-
terpreted using timefmt.

Output: Axis tic labels are generated using a separate format specified either by set format or set xtics format.
By default the usual numeric format specifiers are expected (set xtics numeric). Other options are geographic
coordinates (set xtics geographic), or times or dates (set xtics time).

Note: For backward compatibility with earlier gnuplot versions, the command set xdata time will implicitly
also do set xtics time, and set xdata or unset xdata will implicitly reset to set xtics numeric. However you
can change this with a later call to set xtics.

Examples:
set xdata time # controls interpretation of input data
set timefmt "%d/%m" # format used to read input data
set xtics timedate # controls interpretation of output format
set xtics format "%b %d" # format used for tic labels
set xrange ["01/12":"06/12"]
set xtics "01/12", 172800, "05/12"

set xdata time
set timefmt "%d/%m"
set xtics format "%b %d" time
set xrange ["01/12":"06/12"]
set xtics ("01/12", "" "03/12", "05/12")

Both of these will produce tics "Dec 1", "Dec 3", and "Dec 5", but in the second example the tic at "Dec
3" will be unlabeled.

If the<start>,<incr>,<end> form is used,<incr> defaults to seconds but an explicit time unit ofminutes,
hours, days, weeks,months, or years can be appended. The same is true if only an interval <incr> is given.

Examples
set xtics time 5 years # place labeled tics at five year intervals
set xtics "01-Jan-2000", 1 month, "01-Jan-2001"

There is also a special time mode for minor tics. See set mxtics time (p. 232).

286 gnuplot 6.1

Geographic

set xtics geographic indicates that x-axis values are to be interpreted as a geographic coordinate measured in
degrees. Use set xtics format or set format x to specify the appearance of the axis tick labels. The format
specifiers for geographic data are as follows:

%D = integer degrees
%<width.precision>d = floating point degrees
%M = integer minutes
%<width.precision>m = floating point minutes
%S = integer seconds
%<width.precision>s = floating point seconds
%E = label with E/W instead of +/-
%N = label with N/S instead of +/-

For example, the command set format x "%Ddeg %5.2mmin %E" will cause x coordinate -1.51 to be
labeled as " 1deg 30.60min W".

If the xtics are left in the default state (set xtics numeric) the coordinate will be reported as a decimal number
of degrees, and format will be assumed to contain normal numeric format specifiers rather than the special set
above.

To output degrees/minutes/seconds in a context other than axis tics, such as placing labels on a map, you can
use the relative time format specifiers %tH %tM %tS for strptime. See time_specifiers (p. 207), strptime
(p. 46).

Xtics logscale

If the logscale attribute is set for a tic series along a log-scaled axis, the tic interval is interpreted as a multi-
plicative factor rather than a constant. For example:

generate a series of tics at y=20 y=200 y=2000 y=20000
set log y
set ytics 20, 10, 50000 logscale

Note that no tic is placed at y=50000 because it is not in the series 2*10^x. If the logscale property is disabled,
the tic increment will be treated as an additive constant even for a log-scaled axis. For example:

generate a series of tics at y=20 y=40 y=60 ... y=200
set log y
set yrange [20:200]
set ytics 20 nologscale

The logscale attribute is set automatically by the set log command, so normally you do not need this keyword
unless you want to force a constant tic interval as in the second example above.

Xtics rangelimited

This option limits both the auto-generated axis tic labels and the corresponding plot border to the range of
values actually present in the data that has been plotted. Note that this is independent of the current range
limits for the plot. For example, suppose that the data in "file.dat" all lies in the range 2 < y < 4. Then the
following commands will create a plot for which the left-hand plot border (y axis) is drawn for only this portion
of the total y range, and only the axis tics in this region are generated. I.e., the plot will be scaled to the full
range on y, but there will be a gap between 0 and 2 on the left border and another gap between 4 and 10. This
style is sometimes referred to as a range-frame graph.

gnuplot 6.1 287

set border 3
set yrange [0:10]
set ytics nomirror rangelimited
plot "file.dat"

Xyplane

The set xyplane command adjusts the position at which the xy plane is drawn in a 3D plot. The synonym "set
ticslevel" is accepted for backwards compatibility.

Syntax:
set xyplane at <zvalue>
set xyplane relative <frac>
set ticslevel <frac> # equivalent to set xyplane relative
show xyplane

The form set xyplane relative <frac> places the xy plane below the range in Z, where the distance from the
xy plane to Zmin is given as a fraction of the total range in z. The default value is 0.5. Negative values are
permitted, but tic labels on the three axes may overlap.

The alternative form set xyplane at<zvalue> fixes the placement of the xy plane at a specific Z value regard-
less of the current z range. Thus to force the x, y, and z axes to meet at a common origin one would specify set
xyplane at 0.

See also set view (p. 274), and set zeroaxis (p. 289).

Xzeroaxis

The set xzeroaxis command draws a line at y = 0. For details, please see set zeroaxis (p. 289).

Y2data

The set y2data command sets y2 (right-hand) axis data to timeseries (dates/times). Please see set xdata
(p. 278).

Y2dtics

The set y2dtics command changes tics on the y2 (right-hand) axis to days of the week. Please see set xdtics
(p. 279) for details.

Y2label

The set y2label command sets the label for the y2 (right-hand) axis. Please see set xlabel (p. 279).

Y2mtics

The set y2mtics command changes tics on the y2 (right-hand) axis to months of the year. Please see set xmtics
(p. 280) for details.

288 gnuplot 6.1

Y2range

The set y2range command sets the vertical range that will be displayed on the y2 (right) axis. See set xrange
(p. 280) for the full set of command options. See also set link (p. 222).

Y2tics

The set y2tics command controls major (labeled) tics on the y2 (right-hand) axis. Please see set xtics (p. 282)
for details.

Y2zeroaxis

The set y2zeroaxis command draws a line at the origin of the y2 (right-hand) axis (x2 = 0). For details, please
see set zeroaxis (p. 289).

Ydata

The set ydata commands sets y-axis data to timeseries (dates/times). Please see set xdata (p. 278).

Ydtics

The set ydtics command changes tics on the y axis to days of the week. Please see set xdtics (p. 279) for
details.

Ylabel

This command sets the label for the y axis. Please see set xlabel (p. 279).

Ymtics

The set ymtics command changes tics on the y axis to months of the year. Please see set xmtics (p. 280) for
details.

Yrange

The set yrange command sets the vertical range that will be displayed on the y axis. Please see set xrange
(p. 280) for details.

Ytics

The set ytics command controls major (labeled) tics on the y axis. Please see set xtics (p. 282) for details.

gnuplot 6.1 289

Yzeroaxis

The set yzeroaxis command draws a line at x = 0. For details, please see set zeroaxis (p. 289).

Zdata

The set zdata command sets zaxis data to timeseries (dates/times). Please see set xdata (p. 278).

Zdtics

The set zdtics command changes tics on the z axis to days of the week. Please see set xdtics (p. 279) for
details.

Zzeroaxis

The set zzeroaxis command draws a line through (x=0,y=0). This has no effect on 2D plots, including splot
with set view map. For details, please see set zeroaxis (p. 289) and set xyplane (p. 287).

Cbdata

Set color box axis data to timeseries (dates/times). Please see set xdata (p. 278).

Cbdtics

The set cbdtics command changes tics on the color box axis to days of the week. Please see set xdtics (p. 279)
for details.

Zero

The zero value is the default threshold for values approaching 0.0.

Syntax:
set zero <expression>
show zero

gnuplotwill not plot a point if its imaginary part is greater in magnitude than the zero threshold. This threshold
is also used in various other parts of gnuplot as a (crude) numerical-error threshold. The default zero value is
1e-8. zero values larger than 1e-3 (the reciprocal of the number of pixels in a typical bitmap display) should
probably be avoided, but it is not unreasonable to set zero to 0.0.

Zeroaxis

The x axis may be drawn by set xzeroaxis and removed by unset xzeroaxis. Similar commands behave
similarly for the y, x2, y2, and z axes. set zeroaxis ... (no prefix) acts on the x, y, and z axes jointly.

Syntax:

290 gnuplot 6.1

set {x|x2|y|y2|z}zeroaxis { {linestyle | ls <line_style>}
| {linetype | lt <line_type>}
{linewidth | lw <line_width>}
{linecolor | lc <colorspec>}
{dashtype | dt <dashtype>} }

unset {x|x2|y|y2|z}zeroaxis
show {x|y|z}zeroaxis

By default, these options are off. The selected zero axis is drawn with a line of type <line_type>, width
<line_width>, color <colorspec>, and dash type <dashtype> (if supported by the terminal driver currently
in use), or a user-defined style <line_style> (see set style line (p. 263)).

If no linetype is specified, any zero axes selected will be drawn using the axis linetype (linetype 0).

Examples:

To simply have the y=0 axis drawn visibly:
set xzeroaxis

If you want a thick line in a different color or pattern, instead:
set xzeroaxis linetype 3 linewidth 2.5

Zlabel

This command sets the label for the z axis. Please see set xlabel (p. 279).

Zmtics

The set zmtics command changes tics on the z axis to months of the year. Please see set xmtics (p. 280) for
details.

Zrange

The set zrange command sets the range that will be displayed on the z axis. The zrange is used only by splot
and is ignored by plot. Please see set xrange (p. 280) for details.

Ztics

The set ztics command controls major (labeled) tics on the z axis. Please see set xtics (p. 282) for details.

Cblabel

This command sets the label for the color box axis. Please see set xlabel (p. 279).

Cbmtics

The set cbmtics command changes tics on the color box axis to months of the year. Please see set xmtics
(p. 280) for details.

gnuplot 6.1 291

Cbrange

The set cbrange command sets the range of values which are colored using the current palette by styles with
pm3d, with image and with palette. Values outside of the color range use color of the nearest extreme.

If the cb-axis is autoscaled in splot, then the colorbox range is taken from zrange. Points drawn in splot ...
pm3d|palette can be filtered by using different zrange and cbrange.
Please see set xrange (p. 280) for details on set cbrange (p. 291) syntax. See also set palette (p. 240) and
set colorbox (p. 194).

Cbtics

The set cbtics command controls major (labeled) tics on the color box axis. Please see set xtics (p. 282) for
details.

Shell

The shell command spawns an interactive shell. To return to gnuplot, type exit or the END-OF-FILE character
if using Unix, or exit if using MS-DOS or OS/2.

The shell command ignores anything else on the gnuplot command line. If instead you want to pass a command
string to a shell for immediate execution, use the system function or the shortcut !. See system (p. 302).

Examples:

shell
system "print previous_plot.ps"
! print previous_plot.ps
current_time = system("date")

Show

Most set commands have a corresponding show command with no special options. For example

show linetype 3

will report the current properties in effect from previous commands like

set linetype 3 linewidth 2 dashpattern '.-'

A few show commands that diverge from this pattern are documented separately.

Show colornames

Gnuplot knows about 100 colors by name (see colornames (p. 194)). You can dump a list of these to the
terminal by using the command show colornames. There is currently no way to set new names.

292 gnuplot 6.1

Show functions

The show functions command lists all user-defined functions and their definitions.

Syntax:
show functions

For information about the definition and usage of functions in gnuplot, please see expressions (p. 42). See
also splines as user defined functions (spline.dem)

and use of functions and complex variables for airfoils (airfoil.dem).

Show marks

Syntax:
show marks
show mark <tag>

The show mark command reports the title, fillcolor, and fillstyle properties of currently defined marks. It does
not dump the array of vertices.

If you want to see the array of vertices from an interactive session, use
save marks "-"

Show palette

Syntax:
show palette
show palette palette {<ncolors>} {{float | int | hex}}
show palette gradient
show palette rgbformulae
test palette

The test palette (p. 303) command will plot the R,G,B profiles for the current palette and store the profile
values in a datablock $PALETTE.

Show palette gradient

show palette gradient displays the piecewise gradient established by a prior set palette defined command. If
the current palette is based on rgbformulae or a set of predefined values then this command does nothing.

Show palette palette
show palette palette {<ncolors>} {{float | int | hex}}

show palette palette<n> prints to the screen or to the file given by set print a table of color components for
each entry in the current palette. By default the continuous palette is sampled in 128 increments. Specifying
<ncolors> will sample the palette evenly at this number of increments (rather than 128). The default is a long
listing in the form

http://www.gnuplot.info/demo/spline.html
http://www.gnuplot.info/demo/airfoil.html

gnuplot 6.1 293

0. gray=0.0000, (r,g,b)=(0.0000,0.0000,0.0000), #000000 = 0 0 0
1. gray=0.1111, (r,g,b)=(0.3333,0.0014,0.6428), #5500a4 = 85 0 164
2. gray=0.2222, (r,g,b)=(0.4714,0.0110,0.9848), #7803fb = 120 3 251
...

An optional trailing keyword float, int, or hex instead prints only single representation of the color components
per entry:

int: 85 0 164
float: 0.3333 0.0014 0.6428
hex: 0x5500a4

By using set print to direct this output to a file, the current gnuplot color palette can be loaded into other
imaging applications such as Octave.

By using set print to direct output to a datablock, the current palette can be saved so that it is available to
future plot commands even if the active palette is redefined. This allows creating plots that draw from multiple
palettes, although the colorbox still represents only the current active palette.

Show palette rgbformulae

show palette rgbformulae prints the available fixed gray –> color transformation formulae. It does not show
the state of the current palette.

Show plot

The show plot command shows the most recent plotting command as it results from the last plot and/or splot
and possible subsequent replot commands.

In addition, the show plot add2history command adds this current plot command into the history. It is useful
if you have used replot to add more curves to the current plot and you want to edit the whole command now.

Show variables

The show variables command lists the current value of user-defined and internal variables. Gnuplot internally
defines variables whose names begin with GPVAL_, MOUSE_, FIT_, and TERM_.

Syntax:
show variables # show variables that do not begin with GPVAL_
show variables all # show all variables including those beginning GPVAL_
show variables NAME # show only variables beginning with NAME

Splot

splot is the command for drawing 3D plots (well, actually projections on a 2D surface, but you knew that). It
is the 3D equivalent of the plot command. splot provides only a single x, y, and z axis; there is no equivalent
to the x2 and y2 secondary axes provided by plot.

See the plot (p. 148) command for many options available in both 2D and 3D plots.

Syntax:

294 gnuplot 6.1

splot {<ranges>}
{<iteration>}
<function> | {{<file name> | <datablock name>} {datafile-modifiers}}

| <voxelgridname>
| keyentry

{<title-spec>} {with <style>}
{, {definitions{,}} <function> ...}

The splot command operates on a data generated by a function, read from a data file, or stored previously in a
named data block. Data file names are usually provided as a quoted string. The function can be a mathematical
expression, or a triple of mathematical expressions in parametric mode.

Starting in version 5.4 splot can operate on voxel data. See voxel-grids (p. 299), set vgrid (p. 274), vxrange
(p. 276). At present voxel grids can be be plotted using styles with dots, with points, or with isosurface.
Voxel grid values can also be referenced in the using specifiers of other plot styles, for example to assign colors.

By default splot draws the xy plane completely below the plotted data. The offset between the lowest ztic and
the xy plane can be changed by set xyplane. The orientation of a splot projection is controlled by set view.
See set view (p. 274) and set xyplane (p. 287) for more information.

The syntax for setting ranges on the splot command is the same as for plot. In non-parametric mode, ranges
must be given in the order

splot [<xrange>][<yrange>][<zrange>] ...

In parametric mode, the order is
splot [<urange>][<vrange>][<xrange>][<yrange>][<zrange>] ...

The title option is the same as in plot. The operation of with is also the same as in plot except that not all 2D
plotting styles are available.

The datafile options have more differences.

As an alternative to surfaces drawn using parametric or function mode, the pseudo-file ’++’ can be used to
generate samples on a grid in the xy plane.

See also show plot (p. 293), set view map (p. 274), and sampling (p. 172).

Data-file

Splot, like plot, can display from a file.

Syntax:
splot '<file_name>' {binary <binary list>} {{nonuniform|sparse} matrix}

{index <index list>} {every <every list>}
{using <using list>}
{smooth <option>} {if (<expression>)}

The special filenames "" and "-" are permitted, as in plot. See special-filenames (p. 166).

Keywords binary and matrix indicate that the data are in a special form, index selects which data sets in a
multi-data-set file are plotted, every specifies a subset of lines within a single data set, using determines how
the columns within a single record are interpreted.

The options index and every behave the same way as with plot; using does so also, except that the using list
must provide three entries instead of two.

gnuplot 6.1 295

The plot option smooth is not available for splot, but cntrparam and dgrid3d provide limited smoothing
capabilities.

Data file organization is essentially the same as for plot, except that each point is an (x,y,z) triple. If only a
single value is provided, it will be used for z, the block number will be used for y, and the index of the data point
in the block will be used for x. If two or four values are provided, gnuplot uses the last value for calculating
the color in pm3d plots. Three values are interpreted as an (x,y,z) triple. Additional values are generally used
as errors, which can be used by fit.

Single blank records separate blocks of data in a splot datafile; splot treats blocks as the equivalent of function
y-isolines. No line will join points separated by a blank record. If all blocks contain the same number of points,
gnuplot will draw cross-isolines between points in the blocks, connecting corresponding points. This is termed
"grid data", and is required for drawing a surface, for contouring (set contour) and hidden-line removal (set
hidden3d). See also splot grid_data (p. 298).

Matrix

Matrix data can be input in several formats (uniform, nonuniform, sparse) from either text or binary files.

The first variant assumes a uniform grid of x and y coordinates and assigns each value in the input matrix to one
element M[i,j] of this uniform grid. The assigned x coordinates are the integers [0:NCOLS-1]. The assigned
y coordinates are the integers [0:NROWS-1]. This is the default for text data input, but not for binary input.
See uniform (p. 295) for examples and additional keywords.

The second variant handles a non-uniform grid with explicit x and y coordinates. The first row of input data
contains the y coordinates; the first column of input data contains the x coordinates. For binary input data, the
first element of the first row must contain the number of columns. This is the default for binary matrix input,
but requires an additional keyword nonuniform for text input data. See nonuniform (p. 296) for examples.

The sparse matrix variant defines a uniform grid into which any number of individual point values are read
from the input file, one per line, in any order. This is primarily intended for the generation of heatmaps from
incomplete data. See sparse (p. 296) for examples.

Uniform matrix Example commands for plotting uniform matrix data:
splot 'file' matrix using 1:2:3 # text input
splot 'file' binary general using 1:2:3 # binary input

In a uniform grid matrix the z-values are read in a row at a time, i. e.,
z11 z12 z13 z14 ...
z21 z22 z23 z24 ...
z31 z32 z33 z34 ...

and so forth.

For text input, if the first row contains column labels rather than data, use the additional keyword column-
headers. Similarly if the first field in each row contains a label rather than data, use the additional keyword
rowheaders. Here is an example that uses both:

$DATA << EOD
xxx A B C D
aa z11 z12 z13 z14
bb z21 z22 z23 z24
cc z31 z32 z33 z34
EOD
plot $DATA matrix columnheaders rowheaders with image

296 gnuplot 6.1

For text input, a blank line or comment line ends the matrix, and starts a new data block. You can select among
the data blocks in a file by the index option to the splot command, as usual. The columnheaders option, if
present, is applied only to the first data block.

Nonuniform matrix The first row of input data contains the y coordinates. The first column of input data
contains the x coordinates. For binary input data, the first field of the first row must contain the number of
columns. (This number is ignored for text input).

Example commands for plotting non-uniform matrix data:
splot 'file' nonuniform matrix using 1:2:3 # text input
splot 'file' binary matrix using 1:2:3 # binary input

Thus the data organization for non-uniform matrix input is
<N+1> <x0> <x1> <x2> ... <xN>
<y0> <z0,0> <z0,1> <z0,2> ... <z0,N>
<y1> <z1,0> <z1,1> <z1,2> ... <z1,N>
: : : : ... :

which is then converted into triplets:
<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>
: : :

<x0> <yN> <z0,N>

<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
: : :

These triplets are then converted into gnuplot iso-curves and then gnuplot proceeds in the usual manner to do
the rest of the plotting.

Sparse matrix Syntax:
sparse matrix=(cols,rows) origin=(x0,y0) dx=<delx> dy=<dely>

\\

The sparsematrix variant defines a uniform grid as part of the plot or splot command line. The grid is initially
empty. Any number of individual points are then read from the input file, one per line, and assigned to the
nearest grid point. I.e. a data line

x y value

is evaluated as
i = (x - x0) / delx
j = (y - y0) / dely
matrix[i,j] = value

The size of the matrix is required. origin (optional) defaults to origin=(0,0). dx (optional) defaults to dx=1.
dy (optional) defaults to dy=dx.

The intended use of this variant is to generate heatmaps from unordered, possibly incomplete, data using the
image, rgbimage, or rgbalpha plot styles. The example below generates a distance matrix in the form of a
4x4 heatmap with only the upper triangle elements present:

gnuplot 6.1 297

Atlantis

Finias

Ys

Erewhon

Atlantis Finias Ys Erewhon

Intercity Transit

 Fare

⋎10.

⋎20.

⋎30.

⋎40.

⋎50.

⋎60.

$DATA << EOD
1 1 10
1 2 20
1 3 30
1 4 40
2 2 10
2 3 50
2 4 60
3 3 10
3 4 20
4 4 10
EOD
plot $DATA sparse matrix=(4,4) origin=(1,1) with image

Every The every keyword has special meaning when used with matrix data. Rather than applying to blocks
of single points, it applies to rows and column values. Note that matrix rows and columns are indexed starting
from 0, so the row with index N is the (N+1)th row. Syntax:

plot 'file' matrix every {<column_incr>}
{:{<row_incr>}
{:{<start_column>}
{:{<start_row>}
{:{<end_column>}

{:<end_row>}}}}}

Examples:
plot 'file' matrix every :::N::N # plot all values in row with index N
plot 'file' matrix every ::3::7 # plot columns 3 to 7 for all rows
plot 'file' matrix every ::3:0:7:4 # submatrix bounded by [3,0] and [7,4]

Examples Acollection ofmatrix and vectormanipulation routines (in C) is provided in binary.c. The routine
to write binary data is

int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)

An example of using these routines is provided in the file bf_test.c, which generates binary files for the demo
file demo/binary.dem.

Usage in plot:
plot 'a.dat' matrix
plot 'a.dat' matrix using 1:3
plot 'a.gpbin' {matrix} binary using 1:3

will plot rows of the matrix, while using 2:3 will plot matrix columns, and using 1:2 the point coordinates
(rather useless). Applying the every option you can specify explicit rows and columns.

Example – rescale axes of a matrix in a text file:
splot `a.dat` matrix using (1+$1):(1+$2*10):3

Example – plot the 3rd row of a matrix in a text file:
plot 'a.dat' matrix using 1:3 every 1:999:1:2

(rows are enumerated from 0, thus 2 instead of 3).

Gnuplot can read matrix binary files by use of the option binary appearing without keyword qualifications
unique to general binary, i.e., array, record, format, or filetype. Other general binary keywords for translation
should also apply to matrix binary. (See binary general (p. 150) for more details.)

298 gnuplot 6.1

Example datafile

A simple example of plotting a 3D data file is
splot 'datafile.dat'

where the file "datafile.dat" might contain:
The valley of the Gnu.

0 0 10
0 1 10
0 2 10

1 0 10
1 1 5
1 2 10

2 0 10
2 1 1
2 2 10

3 0 10
3 1 0
3 2 10

Note that "datafile.dat" defines a 4 by 3 grid (4 rows of 3 points each). Rows (blocks) are separated by blank
records.

Note also that the x value is held constant within each dataline. If you instead keep y constant, and plot with
hidden-line removal enabled, you will find that the surface is drawn ’inside-out’.

Actually for grid data it is not necessary to keep the x values constant within a block, nor is it necessary to keep
the same sequence of y values. gnuplot requires only that the number of points be the same for each block.
However since the surface mesh, from which contours are derived, connects sequentially corresponding points,
the effect of an irregular grid on a surface plot is unpredictable and should be examined on a case-by-case basis.

Grid data

The 3D routines are designed for points in a grid format, with one sample, datapoint, at each mesh intersection;
the datapoints may originate from either evaluating a function, see set isosamples (p. 212), or reading a datafile,
see splot datafile (p. 294). The term "isoline" is applied to the mesh lines for both functions and data. Note
that the mesh need not be rectangular in x and y, as it may be parameterized in u and v, see set isosamples
(p. 212).

However, gnuplot does not require that format. In the case of functions, ’samples’ need not be equal to ’isosam-
ples’, i.e., not every x-isoline sample need intersect a y-isoline. In the case of data files, if there are an equal
number of scattered data points in each block, then "isolines" will connect the points in a block, and "cross-
isolines" will connect the corresponding points in each block to generate a "surface". In either case, contour
and hidden3d modes may give different plots than if the points were in the intended format.

Scattered data can be fit to a grid before plotting. See set dgrid3d (p. 200).

The contour code tests for z intensity along a line between a point on a y-isoline and the corresponding point
in the next y-isoline. Thus a splot contour of a surface with samples on the x-isolines that do not coincide with
a y-isoline intersection will ignore such samples. Try:

gnuplot 6.1 299

set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]
set style function lp
set contour
set isosamples 10,10; set samples 10,10;
splot cos(x)*cos(y)
set samples 4,10; replot
set samples 10,4; replot

Splot surfaces

splot can display a surface as a collection of points, or by connecting those points. As with plot, the points may
be read from a data file or result from evaluation of a function at specified intervals, see set isosamples (p. 212).
The surface may be approximated by connecting the points with straight line segments, see set surface (p. 267),
in which case the surface can be made opaque with set hidden3d. The orientation from which the 3d surface
is viewed can be changed with set view.

Additionally, for points in a grid format, splot can interpolate points having a common amplitude (see set
contour (p. 195)) and can then connect those new points to display contour lines, either directly with straight-
line segments or smoothed lines (see set cntrparam (p. 191)). Functions are already evaluated in a grid format,
determined by set isosamples and set samples, while file data must either be in a grid format, as described in
data-file, or be used to generate a grid (see set dgrid3d (p. 200)).

Contour lines may be displayed either on the surface or projected onto the base. The base projections of the
contour lines may be written to a file, and then read with plot, to take advantage of plot’s additional formatting
capabilities.

Voxel-grid

Syntax:
splot $voxelgridname with {dots|points} {above <threshold>} ...
splot $voxelgridname with isosurface {level <threshold>} ...

Voxel data can be plotted with dots or points marking individual voxels whose value is above the specified
threshold value (default threshold = 0). Color/pointtype/linewidth properties can be appended as usual.

At many view angles the voxel grid points will occlude each other or create Moiré artifacts on the display.
These effects can be avoided by introducing jitter so that the displayed dot or point is displaced randomly from
the true voxel grid coordinate. See set jitter (p. 213).

Dense voxel grids can be down-sampled by using the pointinterval property (pi for short) to reduce the number
of points drawn.

splot $vgrid with points pointtype 6 pointinterval 2

with isosurface will create a tessellated surface in 3D enclosing all voxels with value greater than the requested
threshold. The surface placement is adjusted by linear interpolation to pass through the threshold value itself.

See set vgrid (p. 274), vfill (p. 305). See demos vplot.dem, isosurface.dem.

Stats (Statistical Summary)

Syntax:

300 gnuplot 6.1

stats {<ranges>} 'filename' {matrix | using N{:M}} {name 'prefix'} {{no}output}
stats $voxelgridname {name 'prefix'}

This command prepares a statistical summary of the data in one or two columns of a file. The using specifier
is interpreted in the same way as for plot commands. See plot (p. 148) for details on the index (p. 161), every
(p. 156), and using (p. 167) directives. Data points are filtered against both xrange and yrange before analysis.
See set xrange (p. 280). The summary is printed to the screen by default. Output can be redirected to a file
by prior use of the command set print, or suppressed altogether using the nooutput option.

If the file cannot be found or cannot be read, a non-fatal warning is issued. This can be used to test for the
existence of a file without generating a program error. See stats test (p. 302).

In addition to printed output, the program stores the individual statistics into three sets of variables. The first
set of variables reports how the data is laid out in the file. The array of column headers is generated only if
option set datafile columnheaders is in effect:

STATS_records N total number N of in-range data records
STATS_outofrange number of records filtered out by range limits
STATS_invalid number of invalid/incomplete/missing records
STATS_blank number of blank lines in the file
STATS_blocks number of indexable blocks of data in the file
STATS_columns number of data columns in the first row of data
STATS_column_header array of strings holding column headers found

The second set reports properties of the in-range data from a single column. This column is treated as y. If
the y axis is autoscaled then no range limits are applied. Otherwise only values in the range [ymin:ymax] are
considered.

If two columns are analysed jointly by a single stats command, the suffix "_x" or "_y" is appended to each
variable name. I.e. STATS_min_x is the minimum value found in the first column, while STATS_min_y is
the minimum value found in the second column. In this case points are filtered by testing against both xrange
and yrange.

gnuplot 6.1 301

STATS_min min(y) minimum value of in-range data points
STATS_max max(y) maximum value of in-range data points
STATS_index_min i | yi = min(y) index i for which data[i] == STATS_min
STATS_index_max i | yi = max(y) index i for which data[i] == STATS_max
STATS_mean ȳ = 1

N

∑
y mean value of the in-range data points

STATS_stddev σy =
√

1
N

∑
(y − ȳ)2 population standard deviation of the in-range data

STATS_ssd sy =
√

1
N−1

∑
(y − ȳ)2 sample standard deviation of the in-range data

STATS_lo_quartile value of the lower (1st) quartile boundary
STATS_median median value
STATS_up_quartile value of the upper (3rd) quartile boundary
STATS_sum

∑
y sum

STATS_sumsq
∑

y2 sum of squares
STATS_skewness 1

Nσ3

∑
(y − ȳ)3 skewness of the in-range data points

STATS_kurtosis 1
Nσ4

∑
(y − ȳ)4 kurtosis of the in-range data points

STATS_adev 1
N

∑
|y − ȳ| mean absolute deviation of the in-range data

STATS_mean_err σy/
√
N standard error of the mean value

STATS_stddev_err σy/
√
2N standard error of the standard deviation

STATS_skewness_err
√
6/N standard error of the skewness

STATS_kurtosis_err
√
24/N standard error of the kurtosis

The third set of variables is only relevant to analysis of two data columns.

STATS_correlation sample correlation coefficient between x and y values
STATS_slope A corresponding to a linear fit y = Ax + B
STATS_slope_err uncertainty of A
STATS_intercept B corresponding to a linear fit y = Ax + B
STATS_intercept_err uncertainty of B
STATS_sumxy sum of x*y
STATS_pos_min_y x coordinate of a point with minimum y value
STATS_pos_max_y x coordinate of a point with maximum y value

Keyword matrix indicates that the input consists of a matrix (see matrix (p. 295)); the usual statistics are
generated by considering all matrix elements. The matrix dimensions are saved in variables STATS_size_x and
STATS_size_y.

STATS_size_x number of matrix columns
STATS_size_y number of matrix rows

The index reported in STATS_index_xxx corresponds to the value of pseudo-column 0 ($0) in plot commands.
I.e. the first point has index 0, the last point has index N-1.

Data values are sorted to find the median and quartile boundaries. If the total number of points N is odd, then
the median value is taken as the value of data point (N+1)/2. If N is even, then the median is reported as the
mean value of points N/2 and (N+2)/2. Equivalent treatment is used for the quartile boundaries.

For an example of using the stats command to annotate a subsequent plot, see stats.dem.

The stats command in this version of gnuplot can handle log-scaled data, but not the content of time/date fields
(set xdata time or set ydata time). This restriction may be relaxed in a future version.

http://www.gnuplot.info/demo/stats.html

302 gnuplot 6.1

Name

It may be convenient to track the statistics from more than one file or data column in parallel. The name option
causes the default prefix "STATS" to be replaced by a user-specified string. For example, the mean value of
column 2 data from two different files could be compared by

stats "file1.dat" using 2 name "A"
stats "file2.dat" using 2 name "B"
if (A_mean < B_mean) {...}

Instead of providing a string constant as the name, the keyword columnheader or function columnheader(N)
can be used to generate the name from whatever string is found in that column in the first row of the data file:

do for [COL=5:8] { stats 'datafile' using COL name columnheader }

Test for existence of a file

Trying to plot a nonexistent or unreadable file will generate an error that halts the progress of a script or iteration.
The stats command can be used to avoid this as in the example below

do for [i=first:last] {
filename = sprintf("file%02d.dat", i)
stats filename nooutput
if (GPVAL_ERRNO) {

print GPVAL_ERRMSG
continue

}
plot filename title filename

}

Voxelgrid
stats $vgridname {name "prefix"}

The stats command can be used to interrogate the content of a voxel grid. It yields the same information as
show vgrid but saves it in variables accessible for use in a script.

STATS_min minimum non-zero value over all voxels in grid
STATS_max maximum value over all voxels in grid
STATS_mean mean value of non-zero voxels in grid
STATS_stddev standard deviation of non-zero voxel values
STATS_ssum sum over all values in grid
STATS_nonzero number of non-zero voxels

System

Syntax:
system "command string"
! command string
output = system("command string")
show variable GPVAL_SYSTEM

gnuplot 6.1 303

system "command" executes "command" in a subprocess by invoking the operating system’s default shell.
If called as a function, system("command") returns the character stream from the subprocess’s stdout as a
string. One trailing newline is stripped from the resulting string if present. See also backquotes (p. 83).

The exit status of the subprocess is reported in variables GPVAL_SYSTEM_ERRNO and
GPVAL_SYSTEM_ERRMSG. Note that if the command string invokes more than one programs, the
subprocess may return "Success" even if one of the programs produced an error. E.g. file = system("ls -1
*.plt | tail -1") will return "Success" even if there are no *.plt files because tail succeeds even if ls does not.

Test

This command graphically tests or presents terminal and palette capabilities.

Syntax:
test {terminal | palette}

test or test terminal creates a display of line and point styles and other useful things supported by the terminal
you are currently using.

test palette plots profiles of R(z),G(z),B(z), where 0<=z<=1. These are the RGB components of the current
color palette as defined by set palette. It also plots the apparent net intensity as calculated using NTSC co-
efficients to map RGB onto a grayscale. The command also loads the profile values into a datablock named
$PALETTE.

Toggle

Syntax:
toggle {<plotno> | "plottitle" | all}

This command has the same effect as left-clicking on the key entry for a plot currently displayed by an interactive
terminal (qt, wxt, x11). If the plot is showing, it is toggled off; if it is currently hidden, it is toggled on. toggle
all acts on all active plots, equivalent to the hotkey "i". toggle "title" requires an exact match to the plot title.
toggle "ti*" acts on the first plot whose title matches the characters before the final ’*’. If the current terminal
is not interactive, the toggle command has no effect.

Undefine

Clear one ormore previously defined user variables. This is useful in order to reset the state of a script containing
an initialization test.

A variable name can contain the wildcard character * as last character. If the wildcard character is found,
all variables with names that begin with the prefix preceding the wildcard will be removed. This is useful to
remove several variables sharing a common prefix. Note that the wildcard character is only allowed at the end
of the variable name! Specifying the wildcard character as sole argument to undefine has no effect.

Example:
undefine foo foo1 foo2
if (!exists("foo")) load "initialize.gp"

bar = 1; bar1 = 2; bar2 = 3
undefine bar* # removes all three variables

304 gnuplot 6.1

Unset

Options set using the set command may be returned to their default state by the corresponding unset command.
The unset command may contain an optional iteration clause. See plot for (p. 174).

Examples:
set xtics mirror rotate by -45 0,10,100
...
unset xtics

Unset labels numbered between 100 and 200
unset for [i=100:200] label i

Linetype

Syntax:
unset linetype N

Remove all characteristics previously associated with a single linetype. Subsequent use of this linetype will use
whatever characteristics and color that is native to the current terminal type (i.e. the default linetypes properties
available in gnuplot versions prior to 4.6).

Monochrome

Switches the active set of linetypes from monochrome to color. Equivalent to set color.

Output

Because some terminal types allow multiple plots to be written into a single output file, the output file is not
automatically closed after plotting. In order to print or otherwise use the file safely, it should first be closed
explicitly by using unset output or by using set output to close the previous file and then open a new one.

Terminal

The default terminal that is active at the time of program entry depends on the system platform, gnuplot build
options, and the environmental variable GNUTERM. Whatever this default may be, gnuplot saves it to internal
variable GNUTERM. The unset terminal command restores the initial terminal type. It is equivalent to set
terminal GNUTERM. However if the string in GNUTERM contains terminal options in addition to the bare
terminal name, you may want to instead use set terminal @GNUTERM.

Warnings
set warnings
unset warnings

Warning messages for non-fatal errors are normally printed to stderr after echoing the file name, line number,
and command line that triggered the warning. Warnings may be suppressed by the command unset warnings.
A warning may be generated on demand by the command warn "message". They remain suppressed until
explicitly reenabled by set warnings.

gnuplot 6.1 305

Update

Note: This command is DEPRECATED. Use save fit instead.

Vclear

Syntax:
vclear {$gridname}

Resets the value of all voxels in an existing grid to zero. If no grid name is given, clears the currently active
grid.

Vfill

Syntax:
vfill FILE using x:y:z:radius:(<expression>)
vgfill FILE using x:y:z:radius:(<expression>)

The vfill command acts analogously to a plot command except that instead of creating a plot it modifies voxels
in the currently active voxel grid. For each point read from the input file, the voxel containing that point and
also all other voxels within a sphere of given radius centered about (x,y,z) are incremented as follows:

• user variable VoxelDistance is set to the distance from (x,y,z) to that voxel’s origin in user coordinates
(vx,vy,vz).

• user variable GridDistance is set to the distance from (x,y,z) to that voxel’s origin in grid coordinates.
• The expression provided in the 5th using specifier is evaluated. This expression can use the new value
of VoxelDistance and/or GridDistance.

• voxel(vx,vy,vz) += result of evaluating <expression>

Examples:
vfill "file.dat" using 1:2:3:(3.0):(1.0)

This command adds 1 to the value of every voxel within a sphere of radius 3.0 around each point in file.dat.
The number of voxels that this sphere impinges on depends on the grid spacing in user coordinates, which may
be different along the x, y, and z directions.

vgfill "file.dat" using 1:2:3:(2):(1.0)

This command adds 1 to the value of voxels within a 5x5x5 cube of voxels centered on the current point. The
radius "2" is interpreted as extending exactly 2 voxels in either direction along x, 2 voxels in either direction
along y, etc, regardless of the relative scaling of user coordinates along those axes.

Example:
vfill "file.dat" using 1:2:3:4:(VoxelDistance < 1 ? 1 : 1/VoxelDistance)

This command modifies all voxels in a sphere whose radius is determined for each point by the content of
column 4. The increment added to a voxel decreases with its distance from the data point.

Note that vfill and vgfill always increments existing values in the current voxel grid. To reset a single voxel to
zero, use voxel(x,y,z) = 0. To reset the entire grid to zero, use vclear.

306 gnuplot 6.1

Warn

Syntax:
warn "message"

The warn command is essentially the same as printerr except that it prepends the current filename or function
block name and the current line number before printing the requested message to stderr. Unlike printerr the
output from warn is suppressed by unset warnings.

While

Syntax:
while (<expr>) {

<commands>
}

Execute a block of commands repeatedly so long as <expr> evaluates to a non-zero value. This command
cannot be mixed with old-style (un-bracketed) if/else statements. See also do (p. 131), continue (p. 131),
break (p. 129).

gnuplot 6.1 307

Part IV

Terminal types

Complete list of terminals

Gnuplot supports a large number of output formats. These are selected by choosing an appropriate terminal
type, possibly with additional modifying options. See set terminal (p. 268).

This document may describe terminal types that are not available to you because they were not configured or
installed on your system. Terminals marked legacy are not built by default in recent gnuplot versions and may
not actually work. To see a list of terminals available in a particular gnuplot session, type ’set terminal’ with no
modifiers.

Several terminals are designed for use with TeX/LaTeX document preparation. A summary of TeX-friendly
terminals is available here: http://www.gnuplot.info/docs/latex_demo.pdf

Aifm

NOTE: Legacy terminal, originally written for Adobe Illustrator 3.0+. Since Adobe Illustrator understands
PostScript level 1 commands directly, you should use set terminal post level1 instead.

Syntax:

set terminal aifm {color|monochrome} {"<fontname>"} {<fontsize>}

Aqua

This terminal relies on AquaTerm.app for display on MacOS.

Syntax:

set terminal aqua {<n>} {title "<wintitle>"} {size <x> <y>}
{font "<fontname>{,<fontsize>}"}
{linewidth <lw>}"}
{{no}enhanced} {solid|dashed} {dl <dashlength>}}

where <n> is the number of the window to draw in (default is 0), <wintitle> is the name shown in the title
bar (default "Figure <n>"), <x> <y> is the size of the plot (default is 846x594 pt = 11.75x8.25 in).

Use <fontname> to specify the font (default is "Times-Roman"), and <fontsize> to specify the font size
(default is 14.0 pt).

The aqua terminal supports enhanced text mode (see enhanced (p. 39)), except for overprint. Font support is
limited to the fonts available on the system. Character encoding can be selected by set encoding and currently
supports iso_latin_1, iso_latin_2, cp1250, and UTF8 (default).

Lines can be drawn either solid or dashed, (default is solid) and the dash spacing can be modified by
<dashlength> which is a multiplier > 0.

http://www.gnuplot.info/docs/latex_demo.pdf

308 gnuplot 6.1

Be

The be terminal type is present if gnuplot is built for the beos operating system and for use with X servers. It is
selected at program startup if the DISPLAY environment variable is set, if the TERM environment variable
is set to xterm, or if the -display command line option is used.

Syntax:

set terminal be {reset} {<n>}

Multiple plot windows are supported: set terminal be <n> directs the output to plot window number n. If
n>0, the terminal number will be appended to the window title and the icon will be labeled gplt <n>. The
active window may distinguished by a change in cursor (from default to crosshair.)

Plot windows remain open even when the gnuplot driver is changed to a different device. A plot window can be
closed by pressing the letter q while that window has input focus, or by choosing close from a window manager
menu. All plot windows can be closed by specifying reset, which actually terminates the subprocess which
maintains the windows (unless -persist was specified).

Plot windows will automatically be closed at the end of the session unless the -persist option was given.

The size or aspect ratio of a plot may be changed by resizing the gnuplot window.

Linewidths and pointsizes may be changed from within gnuplot with set linestyle.

For terminal type be, gnuplot accepts (when initialized) the standard X Toolkit options and resources such as
geometry, font, and name from the command line arguments or a configuration file. See the X(1) man page (or
its equivalent) for a description of such options.

A number of other gnuplot options are available for the be terminal. These may be specified either as
command-line options when gnuplot is invoked or as resources in the configuration file ".Xdefaults". They
are set upon initialization and cannot be altered during a gnuplot session.

Command-line_options

In addition to the X Toolkit options, the following options may be specified on the command line when starting
gnuplot or as resources in your ".Xdefaults" file:

‘-mono‘ forces monochrome rendering on color displays.
‘-gray‘ requests grayscale rendering on grayscale or color displays.

(Grayscale displays receive monochrome rendering by default.)
‘-clear‘ requests that the window be cleared momentarily before a

new plot is displayed.
‘-raise‘ raises plot window after each plot.
‘-noraise‘ does not raise plot window after each plot.
‘-persist‘ plots windows survive after main gnuplot program exits.

The options are shown above in their command-line syntax. When entered as resources in ".Xdefaults", they
require a different syntax.

Example:

gnuplot*gray: on

gnuplot 6.1 309

gnuplot also provides a command line option (-pointsize <v>) and a resource, gnuplot*pointsize: <v>, to
control the size of points plotted with the points plotting style. The value v is a real number (greater than 0 and
less than or equal to ten) used as a scaling factor for point sizes. For example, -pointsize 2 uses points twice
the default size, and -pointsize 0.5 uses points half the normal size.

Monochrome_options

For monochrome displays, gnuplot does not honor foreground or background colors. The default is black-on-
white. -rv or gnuplot*reverseVideo: on requests white-on-black.

Color_resources

For color displays, gnuplot honors the following resources (shown here with their default values) or the
greyscale resources. The values may be color names as listed in the BE rgb.txt file on your system, hexadecimal
RGB color specifications (see BE documentation), or a color name followed by a comma and an intensity value
from 0 to 1. For example, blue, 0.5 means a half intensity blue.

gnuplot*background: white
gnuplot*textColor: black
gnuplot*borderColor: black
gnuplot*axisColor: black
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral

The command-line syntax for these is, for example,

Example:

gnuplot -background coral

Grayscale_resources

When -gray is selected, gnuplot honors the following resources for grayscale or color displays (shown here
with their default values). Note that the default background is black.

310 gnuplot 6.1

gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100
gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30

Line_resources

gnuplot honors the following resources for setting the width (in pixels) of plot lines (shown here with their
default values.) 0 or 1 means a minimal width line of 1 pixel width. A value of 2 or 3 may improve the
appearance of some plots.

gnuplot*borderWidth: 2
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0

gnuplot honors the following resources for setting the dash style used for plotting lines. 0 means a solid line.
A two-digit number jk (j and k are >= 1 and <= 9) means a dashed line with a repeated pattern of j pixels
on followed by k pixels off. For example, ’16’ is a "dotted" line with one pixel on followed by six pixels off.
More elaborate on/off patterns can be specified with a four-digit value. For example, ’4441’ is four on, four
off, four on, one off. The default values shown below are for monochrome displays or monochrome rendering
on color or grayscale displays. For color displays, the default for each is 0 (solid line) except for axisDashes
which defaults to a ’16’ dotted line.

gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13

gnuplot 6.1 311

Block

The block terminal generates pseudo-graphic output using Unicode block or Braille characters to increase the
resolution. It is an alternative for terminal graphics. It requires a UTF-8 capable terminal or viewer. Drawing
uses the internal bitmap code. Text is printed on top of the graphics using the dumb terminal’s routines.

Syntax:
set term block

{dot | half | quadrants | sextants | octants | braille |
sextpua | octpua}

{{no}enhanced}
{size <x>, <y>}
{mono | ansi | ansi256 | ansirgb}
{{no}optimize}
{[no]attributes}
{numpoints | charpoints | gppoints}
{[no]animate}

size sets the terminal size in character cells.

dot, half, quadrants, sextants, or braille select the character set used for the creation of pseudo-graphics. dot
uses simple dots, while half uses half-block characters. quadrants uses block characters which yield double
resolution in both directions. sextants uses 2x3 block characters, and braille uses Braille characters which
give a 2x4 pseudo-resolution. octants uses the proposed 2x4 block characters. sextpua and octpua use the
sextants or octants, respectively, in the CreativeKorp private-use-area (PUA) which might be only available
with their FairfaxHD and KreativeSquare fonts.

Note that the 2x3 block characters (’sextants’) have only been included in Unicode 13. Hence, font support is
still limited. Similarly for Braille. Usable fonts include e.g. unscii, IBM 3270, GNU Unifont, DejaVu Sans,
and, FairfaxHD. 2x4 block characters (’octants’) have only been accepted for inclusion in a future Unicode
standard in 2022 and are available in the FairfaxHD font.

The ansi, ansi256, and ansirgb options will include escape sequences in the output to output colors. Note
that these might not be handled by your terminal. Default is mono. See terminal dumb (p. 322) for a list of
escape sequences.

The attributes option enables bold and italic text on terminals or emulators that support these escape sequences,
see terminal dumb (p. 322).

Using block characters increases the pseudo-resolution of the bitmap. But this is not the case for the color.
Multiple ’pixels’ necessarily share the same color. This is dealt with by averaging the color of all pixels in a
charcell. With optimize, the terminal tries to improve by setting both, the background and foreground colors.
This trick works perfectly for the half mode, but is increasingly difficult for quadrants, sextants, or octants.
For braille this cannot be used.

gppoints draws point symbols using graphics commands. Due to the low resolution of the terminal, this is
mostly viable for braille or octant mode, and probably most useful for error bars. charpoints uses Unicode
symbol characters instead. Note that these are also always drawn on top of the graphics. numpoints uses
super- and subscript numerals to double the vertical resolution. For sextants, points in the character cell’s
center position have to be drawn using ordinary numerals, though. Note that the bitmap resolution is still
different and lines and symbols in general do not align exactly when using charpoints or numpoints.

The animate option resets the cursor position to the top left of the plot after every plot so that successive plots
overwrite the same area on the screen rather than having earlier plots scroll off the top. This may be desirable
in order to create an in-place animation.

312 gnuplot 6.1

Caca

[EXPERIMENTAL] The caca terminal is a mostly-for-fun output mode that uses libcaca to plot using ascii
characters. In contrast to the dumb terminal it includes support for color, box fill, images, rotated text, filled
polygons, and mouse interaction.

Syntax:

set terminal caca {{driver | format} {default | <driver> | list}}
{color | monochrome}
{{no}inverted}
{enhanced | noenhanced}
{background <rgb color>}
{title "<plot window title>"}
{size <width>,<height>}
{charset ascii|blocks|unicode}

The driver option selects the libcaca display driver or export format. Use default is to let libcaca choose
the platform default display driver. The default driver can be changed by setting the environment variable
CACA_DRIVER before starting gnuplot. Use set term caca driver list to print a list of supported output
modes.

The color and monochrome options select colored or mono output. Note that this also changes line symbols.
Use the inverted option if you prefer a black background over the default white. This also changes the color
of black default linetypes to white.

Enhanced text support can be activated using the enhanced option, see enhanced text (p. 39).

The title of the output window can be changed with the title option, if supported by the libcaca driver.

The size option selects the size of the canvas in characters. The default is 80 by 25. If supported by the
backend, the canvas size will be automatically adjusted to the current window/terminal size. The default size
of the "x11" and "gl" window can be controlled via the CACA_GEOMETRY environment variable. The
geometry of the window of the "win32" driver can be controlled and permanently changed via the app menu.

The charset option selects the character set used for lines, points, filling of polygons and boxes and dithering of
images. Note that some backend/terminal/font combinations might not support some characters of the blocks
or unicode character set. On Windows it is recommend to use a non-raster font such as "Lucida Console" or
"Consolas".

The caca terminal supports mouse interaction. Please beware that some backends of libcaca (e.g. slang,
ncurses) only update the mouse position on mouse clicks. Modifier keys (ctrl, alt, shift) are not supported by
libcaca and are thus unavailable.

The default encoding of the caca terminal is utf8. It also supports the cp437 encoding.

The number of colors supported by libcaca backends differs. Most backends support 16 foreground and 16
background colors only, whereas e.g. the "x11" backend supports truecolor.

Depending on the terminal and libcaca backend, only 8 different background colors might be supported. Bright
colors (with the most most significant bit of the background color set) are then interpreted as indicator for
blinking text. Try using background rgb "gray" in that case.

See also the libcaca web site at http://caca.zoy.org/wiki/libcaca

and libcaca environment variables http://caca.zoy.org/doxygen/libcaca/libcaca-
env.html

http://caca.zoy.org/wiki/libcaca
http://caca.zoy.org/doxygen/libcaca/libcaca-env.html
http://caca.zoy.org/doxygen/libcaca/libcaca-env.html

gnuplot 6.1 313

Caca limitations and bugs

The caca terminal has known bugs and limitations:

Unicode support depends on the driver and the terminal. The "x11" backend supports unicode since libcaca
version 0.99.beta17. Due to a bug in libcaca<0.99.beta20, the "slang" driver does not support unicode. Note
that libcaca <0.99.beta19 contains a bug which results in an endless loop if you supply illegal 8bit sequences.

Bright background colors may cause blinking.

Modifier keys are not supported for mousing, see term caca (p. 312).

Rotated enhanced text, and transparency are not supported. The size option is not considered for on-screen
display.

In order to correctly draw the key box, use
set key width 1 height 1

Alignment of enhanced text is wrong if it contains utf8 characters. Resizing of Windows console window does
not work correctly due to a bug in libcaca. Closing the terminal window by clicking the "X" on the title line
will terminate wgnuplot. Press "q" to close the window.

Cairolatex

The cairolatex terminal device generates encapsulated PostScript (*.eps), PDF, or PNG output using the cairo
and pango support libraries and uses LaTeX for text output using the same routines as the epslatex terminal.

Syntax:
set terminal cairolatex

{eps | pdf | png}
{standalone | input}
{blacktext | colortext | colourtext}
{header <header> | noheader}
{mono|color}
{{no}transparent} {{no}crop} {background <rgbcolor>}
{font } {fontscale <scale>}
{linewidth <lw>} {rounded|butt|square} {dashlength <dl>}
{size <XX>{unit},<YY>{unit}}
{resolution <dpi>}

The cairolatex terminal prints a plot like terminal epscairo or terminal pdfcairo but transfers the texts to
LaTeX instead of including them in the graph. For reference of options not explained here see pdfcairo
(p. 338).

eps, pdf, or png select the type of graphics output. Use eps with latex/dvips and pdf for pdflatex. If your plot
has a huge number of points use png to keep the filesize down. When using the png option, the terminal accepts
an extra option resolution to control the pixel density of the resulting PNG. The argument of resolution is an
integer with the implied unit of DPI.

blacktext forces all text to be written in black even in color mode;

The cairolatex driver offers a special way of controlling text positioning: (a) If any text string begins with ’{’,
you also need to include a ’}’ at the end of the text, and the whole text will be centered both horizontally and
vertically by LaTeX. (b) If the text string begins with ’[’, you need to continue it with: a position specification
(up to two out of t,b,l,r,c), ’]{’, the text itself, and finally, ’}’. The text itself may be anything LaTeX can typeset
as an LR-box. \rule{}{}’s may help for best positioning. See also the documentation for the pslatex (p. 347)
terminal driver. To create multiline labels, use \shortstack, for example

314 gnuplot 6.1

set ylabel '[r]{\shortstack{first line \\ second line}}'

The back option of set label commands is handled slightly different than in other terminals. Labels using ’back’
are printed behind all other elements of the plot while labels using ’front’ are printed above everything else.

The driver produces two different files, one for the eps, pdf, or png part of the figure and one for the LaTeX
part. The name of the LaTeX file is taken from the set output command. The name of the eps/pdf/png file
is derived by replacing the file extension (normally ’.tex’) with ’.eps’/’.pdf’/’.png’ instead. There is no LaTeX
output if no output file is given! Remember to close the output file before next plot unless inmultiplotmode.

In your LaTeX documents use ’\input{filename}’ to include the figure. The ’.eps’/’.pdf’/’.png’ file is included by
the command \includegraphics{...}, so you must also include \usepackage{graphicx} in the LaTeX preamble.
If you want to use coloured text (option colourtext) you also have to include \usepackage{color} in the LaTeX
preamble.

The behaviour concerning font selection depends on the header mode. In all cases, the given font size is used
for the calculation of proper spacing. When not using the standalone mode the actual LaTeX font and font
size at the point of inclusion is taken, so use LaTeX commands for changing fonts. If you use e.g. 12pt as font
size for your LaTeX document, use ’", 12"’ as options. The font name is ignored. If using standalone the
given font and font size are used, see below for a detailed description.

If text is printed coloured is controlled by the TeX booleans \ifGPcolor and \ifGPblacktext. Only if \ifGPcolor
is true and \ifGPblacktext is false, text is printed coloured. You may either change them in the generated TeX
file or provide them globally in your TeX file, for example by using

\newif\ifGPblacktext
\GPblacktexttrue

in the preamble of your document. The local assignment is only done if no global value is given.

When using the cairolatex terminal give the name of the TeX file in the set output command including the file
extension (normally ".tex"). The graph filename is generated by replacing the extension.

If using the standalonemode a complete LaTeX header is added to the LaTeX file; and "-inc" is added to the
filename of the gaph file. The standalonemode generates a TeX file that produces output with the correct size
when using dvips, pdfTeX, or VTeX. The default, input, generates a file that has to be included into a LaTeX
document using the \input command.
If a font other than "" or "default" is given it is interpreted as LaTeX font name. It contains up to three parts,
separated by a comma: ’fontname,fontseries,fontshape’. If the default fontshape or fontseries are requested,
they can be omitted. Thus, the real syntax for the fontname is ’{fontname}{,fontseries}{,fontshape}’. The
naming convention for all parts is given by the LaTeX font scheme. The fontname is 3 to 4 characters long and
is built as follows: One character for the font vendor, two characters for the name of the font, and optionally
one additional character for special fonts, e.g., ’j’ for fonts with old-style numerals or ’x’ for expert fonts. The
names of many fonts is described in http://www.tug.org/fontname/fontname.pdf

For example, ’cmr’ stands for Computer Modern Roman, ’ptm’ for Times-Roman, and ’phv’ for Helvetica. The
font series denotes the thickness of the glyphs, in most cases ’m’ for normal ("medium") and ’bx’ or ’b’ for bold
fonts. The font shape is ’n’ for upright, ’it’ for italics, ’sl’ for slanted, or ’sc’ for small caps, in general. Some
fonts may provide different font series or shapes.

Examples:

Use Times-Roman boldface (with the same shape as in the surrounding text):
set terminal cairolatex font 'ptm,bx'

Use Helvetica, boldface, italics:

http://www.tug.org/fontname/fontname.pdf

gnuplot 6.1 315

set terminal cairolatex font 'phv,bx,it'

Continue to use the surrounding font in slanted shape:
set terminal cairolatex font ',,sl'

Use small capitals:
set terminal cairolatex font ',,sc'

By this method, only text fonts are changed. If you also want to change the math fonts you have to use the
"gnuplot.cfg" file or the header option, described below.

In standalone mode, the font size is taken from the given font size in the set terminal command. To be able
to use a specified font size, a file "size<size>.clo" has to reside in the LaTeX search path. By default, 10pt,
11pt, and 12pt are supported. If the package "extsizes" is installed, 8pt, 9pt, 14pt, 17pt, and 20pt are added.

The header option takes a string as argument. This string is written into the generated LaTeX file. If using
the standalone mode, it is written into the preamble, directly before the \begin{document} command. In the
inputmode, it is placed directly after the \begingroup command to ensure that all settings are local to the plot.
Examples:

Use T1 fontencoding, change the text and math font to Times-Roman as well as the sans-serif font to Helvetica:
set terminal cairolatex standalone header \
"\\usepackage[T1]{fontenc}\n\\usepackage{mathptmx}\n\\usepackage{helvet}"

Use a boldface font in the plot, not influencing the text outside the plot:
set terminal cairolatex input header "\\bfseries"

If the file "gnuplot.cfg" is found by LaTeX it is input in the preamble the LaTeX document, when using
standalone mode. It can be used for further settings, e.g., changing the document font to Times-Roman,
Helvetica, and Courier, including math fonts (handled by "mathptmx.sty"):

\usepackage{mathptmx}
\usepackage[scaled=0.92]{helvet}
\usepackage{courier}

The file "gnuplot.cfg" is loaded before the header information given by the header command. Thus, you can
use header to overwrite some of settings performed using "gnuplot.cfg"

Canvas

The canvas terminal creates a set of javascript commands that draw onto the HTML5 canvas element. Syntax:
set terminal canvas {size <xsize>, <ysize>} {background <rgb_color>}

{font {<fontname>}{,<fontsize>}} | {fsize <fontsize>}
{{no}enhanced} {linewidth <lw>}
{rounded | butt | square}
{dashlength <dl>}
{standalone {mousing} | name '<funcname>'}
{jsdir 'URL/for/javascripts'}
{title '<some string>'}

where <xsize> and <ysize> set the size of the plot area in pixels. The default size in standalone mode is 600
by 400 pixels. The default font size is 10.

316 gnuplot 6.1

NB: Only one font is available, the ascii portion of Hershey simplex Roman provided in the file canvastext.js.
You can replace this with the file canvasmath.js, which contains also UTF-8 encoded Hershey simplex Greek
and math symbols. For consistency with other terminals, it is also possible to use font "name,size". Currently
the font name is ignored, but browser support for named fonts is likely to arrive eventually.

The default standalone mode creates an html page containing javascript code that renders the plot using the
HTML 5 canvas element. The html page links to two required javascript files ’canvastext.js’ and ’gnuplot_com-
mon.js’. An additional file ’gnuplot_dashedlines.js’ is needed to support dashed lines. By default these point
to local files, on unix-like systems usually in directory /usr/local/share/gnuplot/<version>/js. See installation
notes for other platforms. You can change this by using the jsdir option to specify either a different local
directory or a general URL. The latter is usually appropriate if the plot is exported for viewing on remote client
machines.

All plots produced by the canvas terminal are mouseable. The additional keyword mousing causes the
standalone mode to add a mouse-tracking box underneath the plot. It also adds a link to a javascript file
’gnuplot_mouse.js’ and to a stylesheet for the mouse box ’gnuplot_mouse.css’ in the same local or URL direc-
tory as ’canvastext.js’.

The name option creates a file containing only javascript. Both the javascript function it contains and the id of
the canvas element that it draws onto are taken from the following string parameter. The commands

set term canvas name 'fishplot'
set output 'fishplot.js'

will create a file containing a javascript function fishplot() that will draw onto a canvas with id=fishplot. An
html page that invokes this javascript function must also load the canvastext.js function as described above. A
minimal html file to wrap the fishplot created above might be:

<html>
<head>

<script src="canvastext.js"></script>
<script src="gnuplot_common.js"></script>

</head>
<body onload="fishplot();">

<script src="fishplot.js"></script>
<canvas id="fishplot" width=600 height=400>

<div id="err_msg">No support for HTML 5 canvas element</div>
</canvas>

</body>
</html>

The individual plots drawn on this canvas will have names fishplot_plot_1, fishplot_plot_2, and so on. These
can be referenced by external javascript routines, for example gnuplot.toggle_visibility("fishplot_plot_2").

Cgm

The cgm terminal generates a Computer Graphics Metafile, Version 1. This file format is a subset of the
ANSI X3.122-1986 standard entitled "Computer Graphics - Metafile for the Storage and Transfer of Picture
Description Information".

Syntax:
set terminal cgm {color | monochrome} {solid | dashed} {{no}rotate}

{<mode>} {width <plot_width>} {linewidth <line_width>}
{font "<fontname>,<fontsize>"}
{background <rgb_color>}

[deprecated] {<color0> <color1> <color2> ...}

gnuplot 6.1 317

solid draws all curves with solid lines, overriding any dashed patterns; <mode> is landscape, portrait, or
default; <plot_width> is the assumed width of the plot in points; <line_width> is the line width in points
(default 1); <fontname> is the name of a font (see list of fonts below) <fontsize> is the size of the font in
points (default 12).

The first six options can be in any order. Selecting default sets all options to their default values.

The mechanism of setting line colors in the set term command is deprecated. Instead you should set the
background using a separate keyword and set the line colors using set linetype. The deprecated mechanism
accepted colors of the form ’xrrggbb’, where x is the literal character ’x’ and ’rrggbb’ are the red, green and blue
components in hex. The first color was used for the background, subsequent colors are assigned to successive
line types.

Examples:
set terminal cgm landscape color rotate dashed width 432 \

linewidth 1 'Helvetica Bold' 12 # defaults
set terminal cgm linewidth 2 14 # wider lines & larger font
set terminal cgm portrait "Times Italic" 12
set terminal cgm color solid # no pesky dashes!

Cgm font

The first part of a Computer Graphics Metafile, the metafile description, includes a font table. In the picture
body, a font is designated by an index into this table. By default, this terminal generates a table with the
following 35 fonts, plus six more with italic replaced by oblique, or vice-versa (since at least the Microsoft
Office and Corel Draw CGM import filters treat italic and oblique as equivalent):

CGM fonts
Helvetica Hershey/Cartographic_Roman
Helvetica Bold Hershey/Cartographic_Greek
Helvetica Oblique Hershey/Simplex_Roman
Helvetica Bold Oblique Hershey/Simplex_Greek
Times Roman Hershey/Simplex_Script
Times Bold Hershey/Complex_Roman
Times Italic Hershey/Complex_Greek
Times Bold Italic Hershey/Complex_Italic
Courier Hershey/Complex_Cyrillic
Courier Bold Hershey/Duplex_Roman
Courier Oblique Hershey/Triplex_Roman
Courier Bold Oblique Hershey/Triplex_Italic
Symbol Hershey/Gothic_German
ZapfDingbats Hershey/Gothic_English
Script Hershey/Gothic_Italian
15 Hershey/Symbol_Set_1

Hershey/Symbol_Set_2
Hershey/Symbol_Math

The first thirteen of these fonts are required forWebCGM. TheMicrosoft Office CGM import filter implements
the 13 standard fonts listed above, and also ’ZapfDingbats’ and ’Script’. However, the script font may only be
accessed under the name ’15’. For more on Microsoft import filter font substitutions, check its help file which
you may find here:

318 gnuplot 6.1

C:\Program Files\Microsoft Office\Office\Cgmimp32.hlp

and/or its configuration file, which you may find here:
C:\Program Files\Common Files\Microsoft Shared\Grphflt\Cgmimp32.cfg

In the set term command, you may specify a font name which does not appear in the default font table. In
that case, a new font table is constructed with the specified font as its first entry. You must ensure that the
spelling, capitalization, and spacing of the name are appropriate for the application that will read the CGM file.
(Gnuplot and any MIL-D-28003A compliant application ignore case in font names.) If you need to add several
new fonts, use several set term commands.

Example:
set terminal cgm 'Old English'
set terminal cgm 'Tengwar'
set terminal cgm 'Arabic'
set output 'myfile.cgm'
plot ...
set output

You cannot introduce a new font in a set label command.

Cgm fontsize

Fonts are scaled assuming the page is 6 inches wide. If the size command is used to change the aspect ratio
of the page or the CGM file is converted to a different width, the resulting font sizes will be scaled up or down
accordingly. To change the assumed width, use the width option.

Cgm linewidth

The linewidth option sets the width of lines in pt. The default width is 1 pt. Scaling is affected by the actual
width of the page, as discussed under the fontsize and width options.

Cgm rotate

The norotate option may be used to disable text rotation. For example, the CGM input filter for Word for
Windows 6.0c can accept rotated text, but the DRAW editor within Word cannot. If you edit a graph (for
example, to label a curve), all rotated text is restored to horizontal. The Y axis label will then extend beyond
the clip boundary. With norotate, the Y axis label starts in a less attractive location, but the page can be edited
without damage. The rotate option confirms the default behavior.

Cgm solid

The solid option may be used to disable dashed line styles in the plots. This is useful when color is enabled
and the dashing of the lines detracts from the appearance of the plot. The dashed option confirms the default
behavior, which gives a different dash pattern to each line type.

Cgm size

Default size of a CGM plot is 32599 units wide and 23457 units high for landscape, or 23457 units wide by
32599 units high for portrait.

gnuplot 6.1 319

Cgm width

All distances in the CGM file are in abstract units. The application that reads the file determines the size of the
final plot. By default, the width of the final plot is assumed to be 6 inches (15.24 cm). This distance is used to
calculate the correct font size, and may be changed with the width option. The keyword should be followed by
the width in points. (Here, a point is 1/72 inch, as in PostScript. This unit is known as a "big point" in TeX.)
Gnuplot expressions can be used to convert from other units.

Example:
set terminal cgm width 432 # default
set terminal cgm width 6*72 # same as above
set terminal cgm width 10/2.54*72 # 10 cm wide

Cgm nofontlist

The default font table includes the fonts recommended forWebCGM, which are compatible with the Computer
Graphics Metafile input filter for Microsoft Office and Corel Draw. Another application might use different
fonts and/or different font names, which may not be documented. The nofontlist (synonym winword6) option
deletes the font table from the CGMfile. In this case, the reading application should use a default table. Gnuplot
will still use its own default font table to select font indices. Thus, ’Helvetica’ will give you an index of 1, which
should get you the first entry in your application’s default font table. ’Helvetica Bold’ will give you its second
entry, etc.

Context

ConTeXt is a macro package for TeX, highly integrated with Metapost (for drawing figures) and intended for
creation of high-quality PDF documents. The terminal outputs Metafun source, which can be edited manually,
but you should be able to configure most things from outside.

For an average user of ConTeXt + gnuplot module it’s recommended to refer to Using ConTeXt rather than
reading this page or to read the manual of the gnuplot module for ConTeXt.

The context terminal supports the following options:

Syntax:
set term context {default}

{defaultsize | size <scale> | size <xsize>{in|cm}, <ysize>{in|cm}}
{input | standalone}
{timestamp | notimestamp}
{noheader | header "<header>"}
{color | colour | monochrome}
{rounded | mitered | beveled} {round | butt | squared}
{dashed | solid} {dashlength | dl <dl>}
{linewidth | lw <lw>}
{fontscale <fontscale>}
{mppoints | texpoints}
{inlineimages | externalimages}
{defaultfont | font "{<fontname>}{,<fontsize>}"}

In non-standalone (input) graphic only parameters size to select graphic size, fontscale to scale all the labels
for a factor <fontscale> and font size, make sense, the rest is silently ignored and should be configured in the

320 gnuplot 6.1

.tex file which inputs the graphic. It’s highly recommended to set the proper fontsize if document font differs
from 12pt, so that gnuplot will know how much space to reserve for labels.

default resets all the options to their default values.

defaultsize sets the plot size to 5in,3in. size <scale> sets the plot size to <scale> times <default value>. If
two arguments are given (separated with ’,’), the first one sets the horizontal size and the second one the vertical
size. Size may be given without units (in which case it means relative to the default value), with inches (’in’) or
centimeters (’cm’).

input (default) creates a graphic that can be included into another ConTeXt document. standalone adds some
lines, so that the document might be compiled as-is. You might also want to add header in that case.

Use header for any additional settings/definitions/macros that youmight want to include in a standalone graphic.
noheader is the default.

notimestamp prevents printing creation time in comments (if version control is used, one may prefer not to
commit new version when only date changes).

color to make color plots is the default, butmonochrome doesn’t do anything special yet. If you have any good
ideas how the behaviour should differ to suit the monochrome printers better, your suggestions are welcome.

rounded (default), mitered and beveled control the shape of line joins. round (default), butt and squared
control the shape of line caps. See PostScript or PDF Reference Manual for explanation. For wild-behaving
functions and thick lines it is better to use rounded and round to prevent sharp corners in line joins. (Some
general support for this should be added to Gnuplot, so that the same options could be set for each line (style)
separately).

dashed (default) uses different dash patterns for different line types, solid draws all plots with solid lines.

dashlength or dl scales the length of the dashed-line segments by <dl>. linewidth or lw scales all linewidths
by <lw>. (lw 1 stands for 0.5bp, which is the default line width when drawing with Metapost.) fontscale
scales text labels for factor <fontscale> relative to default document font.

mppoints uses predefined point shapes, drawn in Metapost. texpoints uses easily configurable set of symbols,
defined with ConTeXt in the following way:

\defineconversion[my own points][+,{\ss x},\mathematics{\circ}]
\setupGNUPLOTterminal[context][points=tex,pointset=my own points]

inlineimages writes binary images to a string and only works in ConTeXt MKIV. externalimages writes PNG
files to disk and also works with ConTeXt MKII. Gnuplot needs to have support for PNG images built in for
this to work.

With font you can set font name and size in standalone graphics. In non-standalone (input) mode only the font
size is important to reserve enough space for text labels. The command

set term context font "myfont,ss,10"

will result in
\setupbodyfont[myfont,ss,10pt]

If you additionally set fontscale to 0.8 for example, then the resulting font will be 8pt big and
set label ... font "myfont,12"

will come out as 9.6pt.

It is your own responsibility to provide proper typescripts (and header), otherwise switching the font will have
no effect. For a standard font in ConTeXt MKII (pdfTeX) you could use:

gnuplot 6.1 321

set terminal context standalone header '\usetypescript[iwona][ec]' \
font "iwona,ss,11"

Please take a look into ConTeXt documentation, wiki or mailing list (archives) for any up-to-date information
about font usage.

Examples:
set terminal context size 10cm, 5cm # 10cm, 5cm
set terminal context size 4in, 3in # 4in, 3in

For standalone (whole-page) plots with labels in UTF-8 encoding:
set terminal context standalone header '\enableregime[utf-8]'

Requirements

You need gnuplot module for ConTeXt http://ctan.org/pkg/context-gnuplot

and a recent version of ConTeXt. If you want to call gnuplot on-the-fly, you also need write18 enabled. In
most TeX distributions this can be set with shell_escape=t in texmf.cnf.

See http://wiki.contextgarden.net/Gnuplot

for details about this terminal and for more exhaustive help & examples.

Calling gnuplot from ConTeXt

The easiest way to make plots in ConTeXt documents is
\usemodule[gnuplot]
\starttext
\title{How to draw nice plots with {\sc gnuplot}?}
\startGNUPLOTscript[sin]
set format y "%.1f"
plot sin(x) t '$\sin(x)$'
\stopGNUPLOTscript
\useGNUPLOTgraphic[sin]
\stoptext

This will run gnuplot automatically and include the resulting figure in the document.

Debug

This terminal is provided to allow for the debugging of gnuplot. It is likely to be of use only for users who are
modifying the source code.

Domterm

Syntax:
set terminal domterm

{font "<fontname>{,<fontsize>}"} {{no}enhanced}
{fontscale <multiplier>}
{rounded|butt|square} {solid|dashed} {linewidth <lw>}
{background <rgb_color>}
{animate}

http://ctan.org/pkg/context-gnuplot
http://wiki.contextgarden.net/Gnuplot

322 gnuplot 6.1

The domterm terminal device runs on the DomTerm terminal emulator including the domterm and qtdomterm
programs. It supports SVG graphics embedded directly in the terminal output. See http://domterm.org .

For information on terminal options, please see the svg (p. 352) terminal.

Animate
set term domterm animate

The animate option resets the cursor position to the terminal top left at the start of every plot so that successive
plots overwrite the same area on the screen. This may be desirable in order to create an in-place animation.

Dumb

The dumb terminal driver plots into a text block using ascii characters. It has an optional size specification and
a trailing linefeed flag.

Syntax:
set terminal dumb {size <xchars>,<ychars>} {[no]feed}

{aspect <htic>{,<vtic>}}
{[no]enhanced}
{fillchar {solid|"<char>"}}
{[no]attributes}
{mono|ansi|ansi256|ansirgb}

where <xchars> and <ychars> set the size of the text block. The default is 79 by 24. The last newline is
printed only if feed is enabled.

The aspect option can be used to control the aspect ratio of the plot by setting the length of the horizontal
and vertical tic marks. Only integer values are allowed. Default is 2,1 – corresponding to the aspect ratio of
common screen fonts.

The character "#" is used for area-fill. You can replace this with any character available in the terminal font.
fillchar solid is short for fillchar "\U+2588" (unicode FULL BLOCK).
The ansi, ansi256, and ansirgb options will include escape sequences in the output to handle colors. Note that
these might not be handled by your terminal. Default is mono. To obtain the best color match in ansi mode,
you should use set colorsequence classic. Depending on the mode, the dumb terminal will emit the following
sequences (without the additional whitespace):

ESC [0 m reset attributes to defaults
foreground color:
ESC [1 m set intense/bold
ESC [22 m intense/bold off
ESC [<fg> m with color code 30 <= <fg> <= 37
ESC [39 m reset to default
ESC [38; 5; <c> m with palette index 16 <= <c> <= 255
ESC [38; 2; <r>; <g>; m with components 0 <= <r,g,b> <= 255
background color:
ESC [<bg> m with color code 40 <= <bg> <= 47
ESC [49 m reset to default
ESC [48; 5; <c> m with palette index 16 <= <c> <= 231
ESC [48; 2; <r>; <g>; m with components 0 <= <r,g,b> <= 255

See also e.g. the description athttps://en.wikipedia.org/wiki/ANSI_escape_code#Colors

The attributes option enables bold and italic text on terminals or emulators that support the escape sequences

https://en.wikipedia.org/wiki/ANSI_escape_code#Colors
https://en.wikipedia.org/wiki/ANSI_escape_code#Colors

gnuplot 6.1 323

ESC [1 m / 22 m for bold on/off and
ESC [3 m / 23 m for italic on /off.

Example:
set term dumb mono size 60,15 aspect 1
set tics nomirror scale 0.5
plot [-5:6.5] sin(x) with impulse ls -1

1 +---+
0.8 +|||++ ++||||++ |
0.6 +|||||+ ++|||||||+ sin(x) +----+ |
0.4 +||||||+ ++|||||||||+ |
0.2 +|||||||+ ++|||||||||||+ +|
0 ++|

-0.2 + +|||||||||||+ +|||||||||||+ |
-0.4 + +|||||||||+ +|||||||||+ |
-0.6 + +|||||||+ +|||||||+ |
-0.8 + ++||||+ ++||||+ |

-1 +---+--------+--------+-------+--------+--------+-+
-4 -2 0 2 4 6

Dxf

Terminal driver dxf for export to AutoCad (Release 10.x). It has no options. The default size is 120x80
AutoCad units. dxf uses seven colors (white, red, yellow, green, cyan, blue and magenta) that can be changed
only by modifying the source file. If a black-and-white plotting device is used the colors are mapped to differing
line thicknesses. Note: someone please update this terminal to the 2012 DXF standard!

Emf

The emf terminal generates an EnhancedMetafile Format file. This file format is recognized by manyWindows
applications.

Syntax:
set terminal emf {color | monochrome}

{enhanced {noproportional}}
{rounded | butt}
{linewidth <LW>} {dashlength <DL>}
{size XX,YY} {background <rgb_color>}
{font "<fontname>{,<fontsize>}"}
{fontscale <scale>}

In monochrome mode successive line types cycle through dash patterns. linewidth <factor> multiplies all
line widths by this factor. dashlength <factor> is useful for thick lines. <fontname> is the name of a font;
and <fontsize> is the size of the font in points.

The nominal size of the output image defaults to 1024x768 in arbitrary units. You may specify a different
nominal size using the size option.

Enhanced text mode tries to approximate proportional character spacing. If you are using a monospaced font,
or don’t like the approximation, you can turn off this correction using the noproportional option.

The default settings are color font "Arial,12" size 1024,768 Selecting default sets all options to their default
values.

Examples:
set terminal emf 'Times Roman Italic, 12'

324 gnuplot 6.1

Epscairo

The epscairo terminal device generates encapsulated PostScript (*.eps) using the cairo and pango support
libraries. cairo version >= 1.6 is required.

Please read the help for the pdfcairo terminal.

Epslatex

The epslatex driver generates output for further processing by LaTeX.

Syntax:
set terminal epslatex {default}
set terminal epslatex {standalone | input}

{level1 | leveldefault | level3}
{color | colour | monochrome}
{background <rgbcolor> | nobackground}
{dashlength | dl <DL>}
{linewidth | lw <LW>} {pointscale | ps <PS>}
{rounded | butt}
{clip | noclip}
{palfuncparam <samples>{,<maxdeviation>}}
{size <XX>{unit},<YY>{unit}}
{header <header> | noheader}
{blacktext | colortext | colourtext}
{{font} "fontname{,fontsize}" {<fontsize>}}
{fontscale <scale>}

The epslatex terminal prints a plot as terminal postscript eps but transfers the texts to LaTeX instead of
including in the PostScript code. Thus, many options are the same as in the postscript terminal.

If you see the error message
"Can't find PostScript prologue file ... "

Please see and follow the instructions in postscript prologue (p. 346).

The option color enables color, while monochrome prefers black and white drawing elements. Further,
monochrome uses gray palette but it does not change color of objects specified with an explicit colorspec.
dashlength or dl scales the length of dashed-line segments by<DL>, which is a floating-point number greater
than zero. linewidth or lw scales all linewidths by <LW>.

By default the generated PostScript code uses language features that were introduced in PostScript Level 2,
notably filters and pattern-fill of irregular objects such as filledcurves. PostScript Level 2 features are condi-
tionally protected so that PostScript Level 1 interpreters do not issue errors but, rather, display a message or
a PostScript Level 1 approximation. The level1 option substitutes PostScript Level 1 approximations of these
features and uses no PostScript Level 2 code. This may be required by some old printers and old versions of
Adobe Illustrator. The flag level1 can be toggled later by editing a single line in the PostScript output file to
force PostScript Level 1 interpretation. In the case of files containing level 2 code, the above features will not
appear or will be replaced by a note when this flag is set or when the interpreting program does not indicate
that it understands level 2 PostScript or higher. The flag level3 enables PNG encoding for bitmapped images,
which can reduce the output size considerably.

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins.

clip tells PostScript to clip all output to the bounding box; noclip is the default.

gnuplot 6.1 325

palfuncparam controls how set palette functions are encoded as gradients in the output. Analytic color
component functions (set via set palette functions) are encoded as linear interpolated gradients in the postscript
output: The color component functions are sampled at <samples> points and all points are removed from
this gradient which can be removed without changing the resulting colors by more than <maxdeviation>. For
almost every useful palette you may safely leave the defaults of<samples>=2000 and<maxdeviation>=0.003
untouched.

The default size for postscript output is 10 inches x 7 inches. The default for eps output is 5 x 3.5 inches. The
size option changes this to whatever the user requests. By default the X and Y sizes are taken to be in inches,
but other units are possibly (currently only cm). The BoundingBox of the plot is correctly adjusted to contain
the resized image. Screen coordinates always run from 0.0 to 1.0 along the full length of the plot edges as
specified by the size option.

blacktext forces all text to be written in black even in color mode;

The epslatex driver offers a special way of controlling text positioning: (a) If any text string begins with ’{’,
you also need to include a ’}’ at the end of the text, and the whole text will be centered both horizontally and
vertically by LaTeX. (b) If the text string begins with ’[’, you need to continue it with: a position specification
(up to two out of t,b,l,r,c), ’]{’, the text itself, and finally, ’}’. The text itself may be anything LaTeX can typeset
as an LR-box. \rule{}{}’s may help for best positioning. See also the documentation for the pslatex (p. 347)
terminal driver. To create multiline labels, use \shortstack, for example

set ylabel '[r]{\shortstack{first line \\ second line}}'

The back option of set label commands is handled slightly different than in other terminals. Labels using ’back’
are printed behind all other elements of the plot while labels using ’front’ are printed above everything else.

The driver produces two different files, one for the eps part of the figure and one for the LaTeX part. The name
of the LaTeX file is taken from the set output command. The name of the eps file is derived by replacing the
file extension (normally .tex) with .eps instead. There is no LaTeX output if no output file is given! Remember
to close the output file before next plot unless in multiplot mode.

In your LaTeX documents use ’\input{filename}’ to include the figure. The .eps file is included by the command
\includegraphics{...}, so you must also include \usepackage{graphicx} in the LaTeX preamble. If you want
to use coloured text (option textcolour) you also have to include \usepackage{color} in the LaTeX preamble.

Pdf files can be made from the eps file using ’epstopdf’. If the graphics package is properly configured, the
LaTeX files can also be processed by pdflatex without changes, using the pdf files instead of the eps files. The
behaviour concerning font selection depends on the header mode. In all cases, the given font size is used for
the calculation of proper spacing. When not using the standalone mode the actual LaTeX font and font size
at the point of inclusion is taken, so use LaTeX commands for changing fonts. If you use e.g. 12pt as font size
for your LaTeX document, use ’"" 12’ as options. The font name is ignored. If using standalone the given
font and font size are used, see below for a detailed description.

If text is printed coloured is controlled by the TeX booleans \ifGPcolor and \ifGPblacktext. Only if \ifGPcolor
is true and \ifGPblacktext is false, text is printed coloured. You may either change them in the generated TeX
file or provide them globally in your TeX file, for example by using

\newif\ifGPblacktext
\GPblacktexttrue

in the preamble of your document. The local assignment is only done if no global value is given.

When using the epslatex terminal give the name of the TeX file in the set output command including the file
extension (normally ".tex"). The eps filename is generated by replacing the extension by ".eps".

326 gnuplot 6.1

If using the standalonemode a complete LaTeX header is added to the LaTeX file; and "-inc" is added to the
filename of the eps file. The standalone mode generates a TeX file that produces output with the correct size
when using dvips, pdfTeX, or VTeX. The default, input, generates a file that has to be included into a LaTeX
document using the \input command.
If a font other than "" or "default" is given it is interpreted as LaTeX font name. It contains up to three parts,
separated by a comma: ’fontname,fontseries,fontshape’. If the default fontshape or fontseries are requested,
they can be omitted. Thus, the real syntax for the fontname is ’[fontname][,fontseries][,fontshape]’. The naming
convention for all parts is given by the LaTeX font scheme. The fontname is 3 to 4 characters long and is built as
follows: One character for the font vendor, two characters for the name of the font, and optionally one additional
character for special fonts, e.g., ’j’ for fonts with old-style numerals or ’x’ for expert fonts. The names of many
fonts is described in http://www.tug.org/fontname/fontname.pdf

For example, ’cmr’ stands for Computer Modern Roman, ’ptm’ for Times-Roman, and ’phv’ for Helvetica. The
font series denotes the thickness of the glyphs, in most cases ’m’ for normal ("medium") and ’bx’ or ’b’ for bold
fonts. The font shape is ’n’ for upright, ’it’ for italics, ’sl’ for slanted, or ’sc’ for small caps, in general. Some
fonts may provide different font series or shapes.

Examples:

Use Times-Roman boldface (with the same shape as in the surrounding text):
set terminal epslatex 'ptm,bx'

Use Helvetica, boldface, italics:
set terminal epslatex 'phv,bx,it'

Continue to use the surrounding font in slanted shape:
set terminal epslatex ',,sl'

Use small capitals:
set terminal epslatex ',,sc'

By this method, only text fonts are changed. If you also want to change the math fonts you have to use the
"gnuplot.cfg" file or the header option, described below.

In standalone mode, the font size is taken from the given font size in the set terminal command. To be able
to use a specified font size, a file "size<size>.clo" has to reside in the LaTeX search path. By default, 10pt,
11pt, and 12pt are supported. If the package "extsizes" is installed, 8pt, 9pt, 14pt, 17pt, and 20pt are added.

The header option takes a string as argument. This string is written into the generated LaTeX file. If using
the standalone mode, it is written into the preamble, directly before the \begin{document} command. In the
inputmode, it is placed directly after the \begingroup command to ensure that all settings are local to the plot.
Examples:

Use T1 fontencoding, change the text and math font to Times-Roman as well as the sans-serif font to Helvetica:
set terminal epslatex standalone header \
"\\usepackage[T1]{fontenc}\n\\usepackage{mathptmx}\n\\usepackage{helvet}"

Use a boldface font in the plot, not influencing the text outside the plot:
set terminal epslatex input header "\\bfseries"

If the file "gnuplot.cfg" is found by LaTeX it is input in the preamble the LaTeX document, when using
standalone mode. It can be used for further settings, e.g., changing the document font to Times-Roman,
Helvetica, and Courier, including math fonts (handled by "mathptmx.sty"):

http://www.tug.org/fontname/fontname.pdf

gnuplot 6.1 327

\usepackage{mathptmx}
\usepackage[scaled=0.92]{helvet}
\usepackage{courier}

The file "gnuplot.cfg" is loaded before the header information given by the header command. Thus, you can
use header to overwrite some of settings performed using "gnuplot.cfg"

Epson_180dpi

Note: only available if gnuplot is configured –with-bitmap-terminals. This driver supports a family of Epson
printers and derivatives.

epson_180dpi and epson_60dpi are drivers for Epson LQ-style 24-pin printers with resolutions of 180 and
60 dots per inch, respectively.

epson_lx800 is a generic 9-pin driver appropriate for printers like the Epson LX-800, the Star NL-10 and
NX-1000, the PROPRINTER, and so forth.

nec_cp6 is generic 24-pin driver that can be used for printers like the NEC CP6 and the Epson LQ-800.

The okidata driver supports the 9-pin OKIDATA 320/321 Standard printers.

The starc driver is for the Star Color Printer.

The tandy_60dpi driver is for the Tandy DMP-130 series of 9-pin, 60-dpi printers.

The dpu414 driver is for the Seiko DPU-414 thermal printer.

nec_cp6 has the options:

Syntax:
set terminal nec_cp6 {monochrome | colour | draft}

which defaults to monochrome.

dpu414 has the options:

Syntax:
set terminal dpu414 {small | medium | large} {normal | draft}

which defaults to medium (=font size) and normal. Preferred combinations are medium normal and small
draft.

Fig

The fig terminal device generates output in the Fig graphics language for import into the xfig interactive drawing
tool. Notes:

The fig terminal was significantly revised in gnuplot version 5.3.
Currently only version 3.2 of the fig file format is supported.
Use of dash patterns may require Xfig 3.2.6 or newer.

Syntax:
set terminal fig {monochrome | color}

{small | big | size <xsize>{in|cm},<ysize>{in|cm}}
{landscape | portrait}
{pointsmax <max_points>}
{font "<fontname>{,<fontsize>}"} {fontsize <size>}
{textnormal | {textspecial texthidden textrigid}}
{{linewidth|lw} <multiplier>}

328 gnuplot 6.1

The default settings are
set term fig color small landscape font "Times Roman,10" lw 1.0

size sets the size of the drawing area to <xsize>*<ysize> in units of inches (default) or centimeters. The
default is size 5in,3in. small is shorthand for size 5in,3in (3in,5in in portrait mode). big is shorthand for size
8in,5in.

pointsmax sets the maximum number of vertices in a polyline; longer polylines will be broken into segments.

font sets the text font face to <fontname> and its size to <fontsize> points. Choice is limited to the 35
standard PostScript fonts. textnormal resets the text flags and selects postscript fonts, textspecial sets the text
flags for LaTeX specials, texthidden sets the hidden flag and textrigid the rigid flag.

linewidth is a multiplier for the linewidth property of all lines.

Additional point-plot symbols are also available in the fig driver. The symbols can be used through pointtype
values % 100 above 50, with different fill intensities controlled by <pointtype>% 5 and outlines in black (for
<pointtype> % 10 < 5) or in the current color. Available symbols are

50 - 59: circles
60 - 69: squares
70 - 79: diamonds
80 - 89: upwards triangles
90 - 99: downwards triangles

The size of these symbols scales with the font size.

RGB colors will be replaced with gray unless they have been defined in a linetype prior to plotting or match a
known named color or palette value. See colornames (p. 194). E.g.

set linetype 999 lc rgb '#aabbcc'
plot $data with fillecurve fillcolor rgb '#aabbcc'

Gif

Syntax:
set terminal gif

{{no}enhanced}
{{no}transparent} {rounded|butt}
{linewidth <lw>} {dashlength <dl>}
{tiny | small | medium | large | giant}
{font "<face> {,<pointsize>}"} {fontscale <scale>}
{size <x>,<y>} {{no}crop}
{background <rgb_color>}
{animate {delay <d>} {loop <n>} {optimize}}

PNG, JPEG and GIF images are created using the external library libgd. GIF plots may be viewed interactively
by piping the output to the ’display’ program from the ImageMagick package as follows:

set term gif
set output '| display gif:-'

You can view the output from successive plot commands interactively by typing<space> in the display window.
To save the current plot to a file, left click in the display window and choose save.

transparent instructs the driver to make the background color transparent. Default is notransparent.

gnuplot 6.1 329

The linewidth and dashlength options are scaling factors that affect all lines drawn, i.e. they are multiplied
by values requested in various drawing commands.

butt instructs the driver to use a line drawing method that does not overshoot the desired end point of a line.
This setting is only applicable for line widths greater than 1. This setting is most useful when drawing horizontal
or vertical lines.

The output plot size<x,y> is given in pixels — it defaults to 640x480. Please see additional information under
canvas (p. 37) and set size (p. 257). Blank space at the edges of the finished plot may be trimmed using the
crop option, resulting in a smaller final image size. Default is nocrop.

Animate
set term gif animate {delay <d>} {loop <n>} {{no}optimize}}

The gif terminal animate option creates a single gif file containing multiple frames. The delay between display
of successive frames may be specified in units of 1/100 second (default 5), but this value may or may not be
honored accurately by a program used to view the animation later. The number of animation loops during
playback can be specified, with the default of 0 meaning unlimited looping. Again this value may or may not
be honored by the program later used for viewing. An animation sequence is terminated by the next set output
or set term command.

Example showing continuous rotation:
set term gif animate loop 0
set output 'rotating_surface.gif'
do for [ang=1:359] {

set view 60, ang
splot f(x,y) with pm3d

}
unset output

Optimize

set term gif animate optimize

The optimize option [DEPRECATED] is passed to the gd library when the output file is opened. It has two
effects on the animation.

1) A single color map is used for the entire animation. This requires that all colors used in any frame of the
animation are already defined in the first frame.

2) If possible, only the portions of a frame that differ from the previous frame are stored in the animation file.
This space saving may not be possible if the animation uses transparency.

Both of these optimizations are intended to produce a smaller output file, but the decrease in size is probably
only significant for long animations. Caveat: The implementation of optimization in libgd is known to be buggy.
Therefore use of this option in gnuplot is not recommended.

Fonts

The details of font selection are complicated. For more information please see the separate section under fonts
gd (p. 61).

Examples:
set terminal gif medium noenhanced size 640,480 background '#ffffff'

330 gnuplot 6.1

Use the medium size built-in non-scaleable, non-rotatable font. Enhanced text mode will not work with this
font. Use white (24 bit RGB in hexadecimal) for the non-transparent background.

set terminal gif font arial 14

Searches for a font with face name ’arial’ and sets the font size to 14pt.

Gpic

Note: Legacy terminal (present only if gnuplot was configured –with-gpic). The gpic terminal driver generates
GPIC graphs in the Free Software Foundations’s "groff" package. The default size is 5 x 3 inches. The only
option is the origin, which defaults to (0,0).

Syntax:
set terminal gpic {<x> <y>}

where x and y are in inches.

A simple graph can be formatted using
groff -p -mpic -Tps file.pic > file.ps.

The output from pic can be pipe-lined into eqn, so it is possible to put complex functions in a graph with the
set label and set {x/y}label commands. For instance,

set ylab '@space 0 int from 0 to x alpha (t) roman d t@'

will label the y axis with a nice integral if formatted with the command:
gpic filename.pic | geqn -d@@ -Tps | groff -m[macro-package] -Tps

> filename.ps

Figures made this way can be scaled to fit into a document. The pic language is easy to understand, so the
graphs can be edited by hand if need be. All co-ordinates in the pic-file produced by gnuplot are given as
x+gnuplotx and y+gnuploty. By default x and y are given the value 0. If this line is removed with an editor in
a number of files, one can put several graphs in one figure like this (default size is 5.0x3.0 inches):

.PS 8.0
x=0;y=3
copy "figa.pic"
x=5;y=3
copy "figb.pic"
x=0;y=0
copy "figc.pic"
x=5;y=0
copy "figd.pic"
.PE

This will produce an 8-inch-wide figure with four graphs in two rows on top of each other.

One can also achieve the same thing by specifying x and y in the command
set terminal gpic x y

Grass

Note: legacy terminal. The grass terminal driver gives gnuplot capabilities to users of the GRASS geographic
information system. Contact grassp-list@moon.cecer.army.mil for more information. Pages are written to the
current frame of the GRASS Graphics Window. There are no options.

gnuplot 6.1 331

HP terminals

Gnuplot provides two generic terminals for old Hewlett-Packard pen plotters and printers. The HPGL printer
control language was introduced in 1974 and is recognized by many plotters and printers from that era. See
set term hpgl (p. 331). The PCL5 printer control language was introduced in 1990 and became standard for
many devices by HP and others. See set term pcl5 (p. 337). Both of these terminals are included in gnuplot
by default.

There are also legacy terminals to support specific plotters (hp26 hp2648), inkjet printers (hp500c), and early
laserjet printers (hplj hpljii). These are not included unless you modify the source code file term.h.

Hpgl

Syntax:

set terminal hpgl {<number_of_pens>} {eject} {fontscale <scale>}

The hpgl driver produces HPGL output for Hewlett Packard pen plotters like the HP7475A and many other
plotters dating back to the 1970s. Also, HPGL graphics can be imported by many software packages. The
HPGL command language was largely superseded in later printers by the PCL command language. See set
term pcl5 (p. 337).

Terminal options control the number of pens used and whether or not the plotter ejects a page when done. The
default is to use 6 pens and not eject the page.

All text is drawn in a uniform size. The fontscale option applies a scale factor to make this size larger or
smaller. If gnuplot’s current encoding is set to either iso_8859_1 cp850, non-ascii characters are translated for
handling by some printer models that support the corresponding character set. If your printer model does not
support this, do not set these encodings.

Imagen

The imagen terminal driver supports Imagen laser printers. It is capable of placing multiple graphs on a single
page.

Syntax:

set terminal imagen {<fontsize>} {portrait | landscape}
{[<horiz>,<vert>]}

where fontsize defaults to 12 points and the layout defaults to landscape. <horiz> and <vert> are the
number of graphs in the horizontal and vertical directions; these default to unity.

Example:

set terminal imagen portrait [2,3]

puts six graphs on the page in three rows of two in portrait orientation.

Jpeg

Syntax:

332 gnuplot 6.1

set terminal jpeg
{{no}enhanced}
{{no}interlace}
{linewidth <lw>} {dashlength <dl>} {rounded|butt}
{tiny | small | medium | large | giant}
{font "<face> {,<pointsize>}"} {fontscale <scale>}
{size <x>,<y>} {{no}crop}
{background <rgb_color>}

PNG, JPEG and GIF images are created using the external library libgd. In most cases, PNG is to be preferred
for single plots, and GIF for animations. Both are loss-less image formats, and produce better image quality
than the lossy JPEG format. This is in particular noticeable for solid color lines against a solid background, i.e.
exactly the sort of image typically created by gnuplot.

The interlace option creates a progressive JPEG image. Default is nointerlace.

The linewidth and dashlength options are scaling factors that affect all lines drawn, i.e. they are multiplied
by values requested in various drawing commands.

butt instructs the driver to use a line drawing method that does not overshoot the desired end point of a line.
This setting is only relevant for line widths greater than 1. The alternative is rounded.

The details of font selection are complicated. Two equivalent simple examples are given below:
set term jpeg font arial 11
set term jpeg font "arial,11"

For more information please see the separate section under fonts (p. 61).

The output plot size<x,y> is given in pixels — it defaults to 640x480. Please see additional information under
canvas (p. 37) and set size (p. 257). Blank space at the edges of the finished plot may be trimmed using the
crop option, resulting in a smaller final image size. Default is nocrop.

Kittycairo

The kittycairo terminal generates in-window output on terminal emulators that support the kitty graphics
protocol. The actual drawing is done via cairo, a 2D graphics library, and pango, a library for text rendering.
The kitty protocol is an alternative to sixel graphics, with the advantage of support for 24-bit RGB colors and
slightly lower required bandwidth to transfer the image data between computer and terminal in a remote session.

Syntax:
set terminal kittycairo

{{no}enhanced} {mono|color}
{font } {fontscale <scale>}
{linewidth <lw>} {rounded|butt|square} {dashlength <dl>}
{transparent | background <rgbcolor>}
{size <XX>,<YY>} {anchor|scroll}

This terminal processes labels and other text using enhanced formatting by default. See enhanced (p. 39).

The width of all lines in the plot can be modified by the factor <lw> specified in linewidth. The font size
can similarly be uniformly modified the scale factor provided by fontscale. For discussion of font and text
encoding options, see the pdfcairo (p. 338) terminal. The option rounded sets line caps and line joins to be
rounded; butt is the default, producing butt caps and mitered joins.

The size of the plot is given in screen pixels. By default (anchor) each plot is drawn at the top left of the
terminal window. This is useful for animation or pseudo-mousing using the keyboard (see pseudo-mousing
(p. 148)). scroll instead starts each plot at the current cursor position so that it scrolls with the terminal text.

gnuplot 6.1 333

Kittygd

Syntax:
set terminal kittygd

{{no}enhanced} {{no}truecolor} {rounded|butt}
{linewidth <lw>} {dashlength <dl>}
{font "<face> {,<pointsize>}"} {fontscale <scale>}
{size <x>,<y>} {anchor|scroll}
{background <rgb_color>}

The kittygd terminal generates in-window output on terminal emulators that support the kitty graphics protocol.
The plot is composed using the gdlib library. By default the library creates a 24-bit RGB png image that is
mapped down onto 256 colors (truecolor) for output. notruecolor restricts the output to fewer colors but there
is no obvious advantage to this. Transparent fill styles require the truecolor option. See fillstyle (p. 261). If
your copy of gnuplot was built with support for cairo graphics, the kittycairo terminal may be preferable.

This terminal processes labels and other text using enhanced formatting by default. See enhanced (p. 39).

The width of al lines in the pot can be modified by the factor <lw> specified in linewidth. The font size
can similarly be uniformly modified by the scale factor provided in fontscale. For discussion of font and text
encoding options, see the png (p. 340) terminal.

butt instructs the driver to use a line drawingmethod that does not overshoot the desired end point of a line. This
setting is only relevant for line widths greater than 1. The alternative is rounded, which produces somewhat
more uniform curved lines but can be much slower.

The size of the plot is given in screen pixels. By default (anchor) each new plot is drawn starting at the top
left of the window. This is useful for animation or pseudo-mousing using the keyboard (see pseudo-mousing
(p. 148)). The scroll option instead plots at the current cursor position so that successive plots scroll with the
terminal text.

Latex

Gnuplot provides a variety of terminals for use with TeX/LaTeX.

(1) TeX/LaTeX compatible terminals based on use of PostScript See epslatex (p. 324), pslatex (p. 347), and
pstricks (p. 348).

(2) TeX/LaTeX compatible terminals based on cairo graphics See cairolatex (p. 313).

(3) The tikz terminal uses an external lua script (see lua (p. 334)) to produce files for the PGF and TikZ
packages. Use the command set term tikz help to print terminal options.

(4) The pict2e terminal (added in version 5.4) replaces a set of legacy terminals latex, emtex, eepic, and tpic
present in older versions of gnuplot. See pict2e (p. 339).

(5) Others, see context (p. 319) and legacy terminal texdraw (p. 353).

A summary of TeX-friendly terminals is available here: http://www.gnuplot.info/docs/latex_demo.pdf

Linux console

Older gnuplot versions required special terminals linux or vgagl in order to display graphics on the linux
console, i.e. in the absence of X11 or other windowing environment. These terminals have been deprecated.

http://www.gnuplot.info/docs/latex_demo.pdf
http://www.gnuplot.info/docs/latex_demo.pdf

334 gnuplot 6.1

The recommended way to run gnuplot from the linux console is now to use a console terminal emulator such
as yaft (https://github.com/uobikiemukot/yaft) that supports sixel graphics. With yaft as your console terminal
you can run gnuplot and select a terminal with sixel output. See sixelgd (p. 351). As a fall-back option you
could use set term dumb, but sixel graphics are much nicer.

Lua

The lua generic terminal driver works in conjunction with an external Lua script to create a target-specific plot
file. Currently the only supported target is TikZ -> pdflatex.

Information about Lua is available at http://www.lua.org .

Syntax:
set terminal lua <target name> | "<file name>"

{<script_args> ...}
{help}

A ’target name’ or ’file name’ (in quotes) for a script is mandatory. If a ’target name’ for the script is given, the
terminal will look for "gnuplot-<target name>.lua" in the local directory and on failure in the environmental
variable GNUPLOT_LUA_DIR.

All arguments will be provided to the selected script for further evaluation. E.g. ’set term lua tikz help’ will
cause the script itself to print additional help on options and choices for the script.

Lua tikz

The TikZ driver is one output mode of the generic Lua terminal.

Syntax:
set terminal lua tikz

{latex | tex | context}
{color | monochrome}
{nooriginreset | originreset}
{nogparrows | gparrows}
{nogppoints | gppoints}
{picenvironment | nopicenvironment}
{noclip | clip}
{butt}
{notightboundingbox | tightboundingbox}
{background "<colorpec>"}
{size <x>{unit},<y>{unit}}
{scale <x>,<y>}
{plotsize <x>{unit},<y>{unit}}
{charsize <x>{unit},<y>{unit}}
{font "<fontdesc>"}
{{fontscale | textscale} <scale>}
{dashlength | dl <DL>}
{linewidth | lw <LW>}
{nofulldoc | nostandalone | fulldoc | standalone}
{{preamble | header} "<preamble_string>"}
{tikzplot <ltn>,...}
{notikzarrows | tikzarrows}
{rgbimages | cmykimages}
{noexternalimages|externalimages}

gnuplot 6.1 335

{bitmap | nobitmap}
{providevars <var name>,...}
{createstyle}
{help}

For all options that expect lengths as their arguments they will default to ’cm’ if no unit is specified. For all
lengths the following units may be used: ’cm’, ’mm’, ’in’ or ’inch’, ’pt’, ’pc’, ’bp’, ’dd’, ’cc’. Blanks between
numbers and units are not allowed.

’monochrome’ disables line coloring and switches to grayscaled fills.

’originreset’ moves the origin of the TikZ picture to the lower left corner of the plot. It may be used to align
several plots within one tikzpicture environment. This is not tested with multiplots and pm3d plots!

’gparrows’ use gnuplot’s internal arrow drawing function instead of the ones provided by TikZ.

’gppoints’ use gnuplot’s internal plotmark drawing function instead of the ones provided by TikZ.

’nopicenvironment’ omits the declaration of the ’tikzpicture’ environment in order to set it manually. This
permits putting some PGF/TikZ code directly before or after the plot.

’clip’ crops the plot at the defined canvas size. Default is ’noclip’ by which only a minimum bounding box of
the canvas size is set. Neither a fixed bounding box nor a crop box is set if the ’plotsize’ or ’tightboundingbox’
option is used.

’butt’ changes the linecap property to "butt" and the linejoin property to "miter". The defaults are "round"
and "round".

If ’tightboundingbox’ is set the ’clip’ option is ignored and the final bounding box is the natural bounding box
calculated by tikz.

’background’ sets the background color to the value specified in the<colorpec> argument. <colorspec>must
be a valid color name or a 3 byte RGB code as a hexadecimal number with a preceding number sign (’#’). E.g.
’#ff0000’ specifies pure red. If omitted the background is transparent.

The ’size’ option expects two lengths<x> and<y> as the canvas size. The default size of the canvas is 12.5cm
x 8.75cm.

The ’scale’ option works similar to the ’size’ option but expects scaling factors<x> and<y> instead of lengths.

The ’plotsize’ option permits setting the size of the plot area instead of the canvas size, which is the usual gnuplot
behaviour. Using this option may lead to slightly asymmetric tic lengths. Like ’originreset’ this option may not
lead to convenient results if used with multiplots or pm3d plots. An alternative approach is to set all margins
to zero and to use the ’noclip’ option. The plot area has then the dimensions of the given canvas sizes.

The ’charsize’ option expects the average horizontal and vertical size of the used font. Look at the generated
style file for an example of how to use it from within your TeX document.

’fontscale’ or ’textscale’ expects a scaling factor as a parameter. All texts in the plot are scaled by this factor
then.

’dashlength’ or ’dl’ scales the length of dashed-line segments by<DL>, which is a floating-point number greater
than zero. ’linewidth’ or ’lw’ scales all linewidths by <LW>.

The options ’tex’, ’latex’ and ’context’ choose the TeX output format. LaTeX is the default. To load the style
file put the according line at the beginning of your document:
\input gnuplot-lua-tikz.tex % (for plain TeX)
\usepackage{gnuplot-lua-tikz} % (for LaTeX)
\usemodule[gnuplot-lua-tikz] % (for ConTeXt)

336 gnuplot 6.1

’createstyle’ derives the TeX/LaTeX/ConTeXt styles from the script and writes them to the appropriate files.

’fulldoc’ or ’standalone’ produces a full LaTeX document for direct compilation.

’preamble’ or ’header’ may be used to put any additional LaTeX code into the document preamble in standalone
mode.

With the ’tikzplot’ option the ’\path plot’ command will be used instead of only ’\path’. The following list of
numbers of linetypes (<ltn>,...) defines the affected plotlines. There exists a plotstyle for every linetype. The
default plotstyle is ’smooth’ for every linetype >= 1.

By default the tikz terminal produces simple LaTeX arrows. To produce arrows in accord with gnuplot’s
’arrowstyle’ settings, use the ’gparrows’ option. The ’tikzarrows’ option is a third alternative that bypasses both
of these. Instead the arrowstyle ’angle’ parameter is used to index a set of 12 pre-defined TikZ arrow styles.
E.g. an arrow style with the angle ’7’ will be mapped to the TikZ style ’gp arrow 7’ ignoring all other arrowstyle
settings.

With ’cmykimages’ the CMYK color model will be used for inline image data instead of the RGB model. All
other colors (like line colors etc.) are not affected by this option, since they are handled e.g. by LaTeX’s xcolor
package. This option is ignored if images are externalized.

By using the ’externalimages’ option all bitmap images will be written as external PNG images and included at
compile time of the document. Generating DVI and later postscript files requires to convert the PNGs into EPS
files in a separate step e.g. by using ImageMagick’s convert. Transparent bitmap images are always generated
as an external PNGs.

The ’nobitmap’ option let images be rendered as filled rectangles instead of the nativ PS or PDF inline image
format. This option is ignored if images are externalized.

The ’providevars’ options makes gnuplot’s internal and user variables available by using the ’\gpgetvar{<var
name>}’ command within the TeX script. Use gnuplot’s ’show variables all’ command to see the list of valid
variables.

The <fontdesc> string may contain any valid TeX/LaTeX/ConTeXt font commands like e.g. ’\small’. It is
passed directly as a node parameter in form of "font={<fontdesc>}". This can be ’misused’ to add further
code to a node, e.g. ’\small,yshift=1ex’ or ’,yshift=1ex’ are also valid while the latter does not change the current
font settings. One exception is the second argument of the list. If it is a number of the form <number>{unit}
it will be interpreted as a fontsize like in other terminals and will be appended to the first argument. If the
unit is omitted the value is interpreted as ’pt’. As an example the string ’\sffamily,12,fill=red’ sets the font
to LaTeX’s sans serif font at a size of 12pt and red background color. The same applies to ConTeXt, e.g.
’\switchtobodyfont[iwona],10’ changes the font to Iwona at a size of 10pt. Plain TeX users have to change the
font size explicitly within the first argument. The second should be set to the same value to get proper scaling
of text boxes.

Strings have to be put in single or double quotes. Double quoted strings may contain special characters like
newlines ’\n’ etc.

Pbm

Note: only available if gnuplot is configured –with-bitmap-terminals. Syntax:
set terminal pbm {<fontsize>} {<mode>} {size <x>,<y>}

where<fontsize> is small,medium, or large and<mode> ismonochrome, gray or color. The default plot
size is 640 pixels wide and 480 pixels high. The output size is white-space padded to the nearest multiple of 8

gnuplot 6.1 337

pixels on both x and y. This empty space may be cropped later if needed.

The output of the pbm driver depends upon <mode>: monochrome produces a portable bitmap (one bit per
pixel), gray a portable graymap (three bits per pixel) and color a portable pixmap (color, four bits per pixel).

The output of this driver can be used with various image conversion and manipulation utilities provided by
NETPBM. Based on Jef Poskanzer’s PBMPLUS package, NETPBM provides programs to convert the above
PBM formats to GIF, TIFF, MacPaint, Macintosh PICT, PCX, X11 bitmap and many others. Complete
information is available at http://netpbm.sourceforge.net/.

Examples:
set terminal pbm small monochrome # defaults
set terminal pbm color medium size 800,600
set output '| pnmrotate 45 | pnmtopng > tilted.png' # uses NETPBM

Pcl5

The pcl5 driver supports Hewlett Packard and other printers from the 1990s and later.

Syntax:
set terminal pcl5 {<mode>} {{no}enhanced}

{size <plotsize> | size <width>{unit},<height>{unit}}
{font "<fontname>,<size>"} {pspoints | nopspoints}
{fontscale <scale>} {pointsize <scale>} {linewidth <scale}
{rounded|butt} {color <number_of_pens>}

<mode> is landscape or portrait. <plotsize> is the physical plotting size of the plot, which can be one of the
following formats: letter for standard (8 1/2" X 11") displays, legal for (8 1/2" X 14") displays, noextended
for (36" X 48") displays (a letter size ratio), extended for (36" X 55") displays (almost a legal size ratio), or
a4 for (296mm X 210mm) displays. You can also explicitly specify the canvas size using the width and height
options. Default unit is in. Default size is letter.

<fontname> can be one of stick, univers (default), albertus, antique_olive, arial, avant_garde_gothic,
bookman, zapf_chancery, clarendon, coronet, courier courier_ps, cg_times, garamond_antigua, helvetica,
helvetica_narrow, letter_gothic, marigold, new_century_schlbk, cg_omega, palatino, times_new_roman,
times_roman, zapf_dingbats, truetype_symbols, or wingdings. Font names are case-insensitive and under-
scores may be replaced by spaces or dashes or may be left out. <fontsize> is the font size in points.

The point type selection can be the a limited default set by specifying nopspoints, or the same set of point
types as provided by the postscript terminal by specifying pspoints (default).

The butt option selects lines with butt ends and mitered joins (default), whereas rounded selects rounded line
ends and joins.

Line widths, and point and font sizes can be scaled using the linewidth, pointscale, or fontscale options,
respectively.

color selects the number of pens <number_of_pens> used in plots. Default is 8, minimum 2.

Note that built-in support of some of these options is printer device dependent. For instance, all the fonts are
supposedly supported by the HP Laserjet IV, but only a few (e.g. univers, stick) may be supported by the HP
Laserjet III and the Designjet 750C. Also, color obviously won’t work on monochrome devices, but newer ones
will do grey-scale.

Defaults: landscape, a4, 8 pens, univers, 12 point, pspoints, butt, no scaling

338 gnuplot 6.1

The pcl5 terminal will try to request fonts which match your encoding. Note that this has highest priority, so
you might end up with a different font face. The terminal’s default encoding is HP Roman-8.

Limitations:

This terminal does not support alpha transparency. Transparent filling is emulated using shading patterns.
Boxed text is not implemented.

The support for UTF-8 is limited. Lacking the label mode for UTF-8 output in HP-GL/2, the driver reverts
to PCL for strings containing 8bit characters. UTF-8 text is limited to angles of 0, 90, 180, and 270 degrees.
Also vertical alignment might be off depending on the font.

Some enhanced text features (phantom box, overprinting) require using PCL features in addition to HP-GL/2.
This conforms to the specs but may not work with your printer or software.

Pdfcairo

The pdfcairo terminal device generates output in pdf. The actual drawing is done via cairo, a 2D graphics
library, and pango, a library for laying out and rendering text.

Syntax:

set term pdfcairo
{{no}enhanced} {mono|color}
{font } {fontscale <scale>}
{linewidth <lw>} {rounded|butt|square} {dashlength <dl>}
{background <rgbcolor>}
{size <XX>{unit},<YY>{unit}}

This terminal processes labels and other text using enhanced formatting by default. See enhanced (p. 39).

The width of all lines in the plot can be modified by the factor <lw> specified in linewidth. The default
linewidth is 0.5 points. (1 "PostScript" point = 1/72 inch = 0.353 mm)

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins.

The default size for output is 5 inches x 3 inches. The size option changes this to whatever the user requests.
By default the X and Y sizes are taken to be in inches, but other units are possible (currently only cm). font is
in the format "FontFace,FontSize", i.e. the face and the size comma-separated in a single string. FontFace is
a usual font face name, such as ’Arial’. If you do not provide FontFace, the pdfcairo terminal will use ’Sans’.
FontSize is the font size, in points. If you do not provide it, the pdfcairo terminal will use a nominal font size of
12 points. However, the default fontscale parameter for this terminal is 0.5, so the apparent font size is smaller
than the nominal point size if the pdf output is viewed at full size.

Examples :
set term pdfcairo font "Arial,12"
set term pdfcairo font "Serif" # to change the font face only
set term pdfcairo font ",14" # to change the font size only
set term pdfcairo font "" # to reset the font name and size

The fonts are retrieved from the usual fonts subsystems. Under Windows, those fonts are to be found and
configured in the entry "Fonts" of the control panel. Under UNIX, they are handled by "fontconfig".

Pango, the library used to process the text, is based on utf-8. The pdfcairo terminal will convert from your
encoding to utf-8 if needed. The assumed input encoding is taken from your ’locale’. If your text actually uses a
different encoding, make sure gnuplot knows which one you are using. See encoding (p. 202) for more details.

gnuplot 6.1 339

Pango may give unexpected results with fonts that do not respect the unicode mapping. With the Symbol font,
for example, the pdfcairo terminal will use the map provided by http://www.unicode.org/ to translate character
codes to unicode. Note that "the Symbol font" is to be understood as the Adobe Symbol font, distributed with
Acrobat Reader as "SY______.PFB". Alternatively, the OpenSymbol font, distributed with OpenOffice.org as
"opens___.ttf", offers the same characters. Microsoft has distributed a Symbol font ("symbol.ttf"), but it has
a different character set with several missing or moved mathematic characters. If you experience problems with
your default setup (if the demo enhancedtext.dem is not displayed properly for example), you probably have
to install one of the Adobe or OpenOffice Symbol fonts, and remove the Microsoft one. Other non-conform
fonts, such as "wingdings" have been observed working.

The rendering of the plot involves two mechanisms : antialiasing and oversampling. Antialiasing produces
smoother non-horizontal and non-vertical lines. Oversampling combined with antialiasing provides subpixel
accuracy, so that gnuplot can draw a line from non-integer coordinates. This avoids wobbling effects on diagonal
lines (’plot x’ for example).

Pict2e

The pict2e terminal uses the LaTeX2e variant of the picture environment. It replaces terminals which were
based on the original LaTeX picture environment: latex, emtex, tpic, and eepic.

Alternatives to this terminal with a more complete support of gnuplot’s features are tikz, pstricks, cairolatex,
pslatex, epslatex and mp.

Syntax:
set terminal pict2e

{font "{<fontname>}{,<fontsize>}"}
{size <XX>{unit}, <YY>{unit}}
{color | monochrome}
{linewidth <lw>} {rounded | butt}
{texarrows | gparrows} {texpoints | gppoints}
{smallpoints | tinypoints | normalpoints}

This terminal requires the following standard LaTeX packages: pict2e, xcolor, graphics/graphicx and
amssymb. For pdflatex, the transparent package is used to support transparency.

By default the plot will inherit font settings from the embedding document. You have the option to force a font
with the font option, like cmtt (Courier) or cmr (Roman), instead. In this case you may also force a specific
fontsize. Otherwise the fontsize argument is used to estimate the required space for text. Unless your driver is
capable of building fonts at any size (e.g. dvips), stick to the standard 10, 11 and 12 point sizes.

The default size for the plot is 5 inches by 3 inches. The size option changes this to whatever the user requests.
By default the X and Y sizes are taken to be in inches, but other units are possible (currently only cm).

With texpoints, points are drawn using LaTeX commands like "\Diamond" and "\Box". These are provided
by the the latexsym package, which is part of the base distribution and thus part of any LaTeX implementation.
Other point types use symbols from the amssymb package. With gppoints, the terminal will use gnuplot’s
internal routines for drawing point symbols instead.

With the texpoints option, you can select three different point sizes: normalpoints, smallpoints, and tiny-
points.

color causes gnuplot to produce \color{...} commands so that the graphs are colored. Using this option, you
must include \usepackage{xcolor} in the preamble of your LaTeX document. monochrome will avoid the use
of any color commands in the output. Transparent color fill is available if pdflatex is used.

340 gnuplot 6.1

linewidth sets the scale factor for the width of lines. rounded sets line caps and line joins to be rounded. butt
sets butt caps and mitered joins and is the default.

pict2e only supports dotted lines, but not dashed lines. All default line types are solid. Use set linetype with
the dashtype property to change.

texarrows draws arrows using LaTeX commands which are shorter but do not offer all options. gparrows
selects drawing arrows using gnuplot’s own routine for full functionality instead.

Pm

The pm terminal driver provides an OS/2 Presentation Manager window in which the graph is plotted. The
window is opened when the first graph is plotted. This window has its own online help as well as facilities for
printing and copying to the clipboard.

Syntax:
set terminal pm {{server} {n} | noserver}

{nopersist | persist}
{enhanced | noenhanced}
{font <fontspec>}
{nowidelines | widelines}
{fontscale <scale>}
{linewidth <scale>}
{pointscale <scale>}
{{title} "title"}

If persist is specified, each graph appears in its own window and all windows remain open after gnuplot exits.
If server is specified, all graphs appear in the same window, which remains open when gnuplot exits. This
option takes an optional numerical argument which specifies an instance of the server process. Thus multiple
server windows can be in use at the same time.

Ifwidelines is specified, all plots will be drawn with wide lines. If enhanced is specified, sub- and superscripts
and multiple fonts are enabled (see enhanced text (p. 39) for details). Font names for the core PostScript fonts
may be abbreviated to a single letter (T/H/C/S for Times/Helvetica/Courier/Symbol).

linewidth, fontscale, pointscale can be used to scale the width of lines, the size of text, or the size of the point
symbols.

If title is specified, it will be used as the title of the plot window. It will also be used as the name of the server
instance, and will override the optional numerical argument.

The gnuplot outboard driver, gnupmdrv.exe, is searched in the same directory as gnuplot itself. You can
override that by defining one of the environment variables GNUPLOT_DRIVER_DIR or GNUPLOT. As a
last resort the current directory and the PATH are tried to locate gnupmdrv.exe.

Png

Syntax:
set terminal png

{{no}enhanced}
{{no}transparent} {{no}interlace}
{{no}truecolor} {rounded|butt}
{linewidth <lw>} {dashlength <dl>}
{tiny | small | medium | large | giant}

gnuplot 6.1 341

{font "<face> {,<pointsize>}"} {fontscale <scale>}
{size <x>,<y>} {{no}crop}
{background <rgb_color>}

PNG, JPEG andGIF images are created using the external library libgd. PNG plots may be viewed interactively
by piping the output to the ’display’ program from the ImageMagick package as follows:

set term png
set output '| display png:-'

You can view the output from successive plot commands interactively by typing<space> in the display window.
To save the current plot to a file, left click in the display window and choose save.

transparent instructs the driver to make the background color transparent. Default is notransparent.

interlace instructs the driver to generate interlaced PNGs. Default is nointerlace.

The linewidth and dashlength options are scaling factors that affect all lines drawn, i.e. they are multiplied
by values requested in various drawing commands.

By default the png terminal creates TrueColor images with 24 bits of color information per pixel. The notrue-
color option instead uses only 8 bits, (256 indexed colors). Transparent fill styles require the truecolor option.
See fillstyle (p. 261). A transparent background is possible in either indexed or TrueColor images. Antialiasing
also requires TrueColor.

butt instructs the driver to use a line drawingmethod that does not overshoot the desired end point of a line. This
setting is only relevant for line widths greater than 1. The alternative is rounded, which produces somewhat
more uniform curved lines if antialiasing is not available (notruecolor) but can be much slower.

The details of font selection are complicated. Two equivalent simple examples are given below:
set term png font arial 11
set term png font "arial,11"

For more information please see the separate section under fonts (p. 61).

The output plot size<x,y> is given in pixels — it defaults to 640x480. Please see additional information under
canvas (p. 37) and set size (p. 257). Blank space at the edges of the finished plot may be trimmed using the
crop option, resulting in a smaller final image size. Default is nocrop.

Examples
set terminal png font "arial,14" size 800,600 background "white"

Searches for a scalable font with face name ’arial’ and sets the font size to 14pt. Please see fonts (p. 61) for
details of how the font search is done.

set terminal png transparent enhanced

Use 24 bits of color information per pixel, with a transparent background. Use the enhanced text mode to
control the layout of strings to be printed.

Pngcairo

The pngcairo terminal device generates output in png. The actual drawing is done via cairo, a 2D graphics
library, and pango, a library for laying out and rendering text.

Syntax:

342 gnuplot 6.1

set term pngcairo
{{no}enhanced} {mono|color}
{{no}transparent} {{no}crop} {background <rgbcolor>
{font } {fontscale <scale>} {hinting <percent>}
{linewidth <lw>} {rounded|butt|square} {dashlength <dl>}
{pointscale <ps>}
{size <XX>{unit},<YY>{unit}}

This terminal supports an enhanced text mode, which allows font and other formatting commands (subscripts,
superscripts, etc.) to be embedded in labels and other text strings. The enhanced text mode syntax is shared
with other gnuplot terminal types. See enhanced (p. 39) for more details.

The width of all lines in the plot can be modified by the factor <lw>.

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins.

The default size for the output is 640 x 480 pixels. The size option changes this to whatever the user requests.
By default the X and Y sizes are taken to be in pixels, but other units are possible (currently cm and inch).
A size given in centimeters or inches will be converted into pixels assuming a resolution of 72 dpi. Screen
coordinates always run from 0.0 to 1.0 along the full length of the plot edges as specified by the size option.

 is in the format "FontFace,FontSize", i.e. the face and the size comma-separated in a single string.
FontFace is a usual font face name, such as ’Arial’. If you do not provide FontFace, the pngcairo terminal will
use ’Sans’. FontSize is the font size, in points. If you do not provide it, the pngcairo terminal will use a size of
12 points.

For example :
set term pngcairo font "Arial,12"
set term pngcairo font "Arial" # to change the font face only
set term pngcairo font ",12" # to change the font size only
set term pngcairo font "" # to reset the font name and size

The fonts are retrieved from the usual fonts subsystems. Under Windows, those fonts are to be found and
configured in the entry "Fonts" of the control panel. Under UNIX, they are handled by "fontconfig".

Pango, the library used to layout the text, is based on utf-8. Thus, the pngcairo terminal has to convert from your
encoding to utf-8. The default input encoding is based on your ’locale’. If you want to use another encoding,
make sure gnuplot knows which one you are using. See encoding (p. 202) for more detail.

Pango may give unexpected results with fonts that do not respect the unicode mapping. With the Symbol font,
for example, the pngcairo terminal will use the map provided by http://www.unicode.org/ to translate character
codes to unicode. Note that "the Symbol font" is to be understood as the Adobe Symbol font, distributed with
Acrobat Reader as "SY______.PFB". Alternatively, the OpenSymbol font, distributed with OpenOffice.org
as "opens___.ttf", offers the same characters. Microsoft has distributed a Symbol font ("symbol.ttf"), but it
has a different character set with several missing or moved mathematic characters. If you experience problems
with your default setup (if the demo enhancedtext.dem is not displayed properly for example), you probably
have to install one of the Adobe or OpenOffice Symbol fonts, and remove the Microsoft one.

Rendering uses oversampling, antialiasing, and font hinting to the extent supported by the cairo and pango
libraries. The hinting parameter (0-100) is passed to Pango but may be ignored.

Postscript

Several options may be set in the postscript driver.

Syntax:

gnuplot 6.1 343

set terminal postscript {default}
set terminal postscript {landscape | portrait | eps}

{enhanced | noenhanced}
{defaultplex | simplex | duplex}
{fontfile {add | delete} "<filename>"
| nofontfiles} {{no}adobeglyphnames}

{level1 | leveldefault | level3}
{color | colour | monochrome}
{background <rgbcolor> | nobackground}
{dashlength | dl <DL>}
{linewidth | lw <LW>} {pointscale | ps <PS>}
{rounded | butt}
{clip | noclip}
{palfuncparam <samples>{,<maxdeviation>}}
{size <XX>{unit},<YY>{unit}}
{blacktext | colortext | colourtext}
{{font} "fontname{,fontsize}" {<fontsize>}}
{fontscale <scale>}

If you see the error message
"Can't find PostScript prologue file ... "

Please see and follow the instructions in postscript prologue (p. 346).

landscape and portrait choose the plot orientation. epsmode generates EPS (Encapsulated PostScript) output,
which is just regular PostScript with some additional lines that allow the file to be imported into a variety of
other applications. (The added lines are PostScript comment lines, so the file may still be printed by itself.) To
get EPS output, use the eps mode and make only one plot per file. In eps mode the whole plot, including the
fonts, is reduced to half of the default size.

enhanced enables enhanced text mode features (subscripts, superscripts and mixed fonts). See enhanced
(p. 39) for more information. blacktext forces all text to be written in black even in color mode;

Duplexing in PostScript is the ability of the printer to print on both sides of the same sheet of paper. With
defaultplex, the default setting of the printer is used; with simplex only one side is printed; duplex prints on
both sides (ignored if your printer can’t do it).

"<fontname>" is the name of a valid PostScript font; and <fontsize> is the size of the font in PostScript
points. In addition to the standard postscript fonts, an oblique version of the Symbol font, useful for mathe-
matics, is defined. It is called "Symbol-Oblique".

default sets all options to their defaults: landscape, monochrome, dl 1.0, lw 1.0, defaultplex, enhanced,
"Helvetica" and 14pt. Default size of a PostScript plot is 10 inches wide and 7 inches high. The option color
enables color, whilemonochrome prefers black and white drawing elements. Further,monochrome uses gray
palette but it does not change color of objects specified with an explicit colorspec. dashlength or dl scales
the length of dashed-line segments by <DL>, which is a floating-point number greater than zero. linewidth
or lw scales all linewidths by <LW>.

By default the generated PostScript code uses language features that were introduced in PostScript Level 2,
notably filters and pattern-fill of irregular objects such as filledcurves. PostScript Level 2 features are condi-
tionally protected so that PostScript Level 1 interpreters do not issue errors but, rather, display a message or
a PostScript Level 1 approximation. The level1 option substitutes PostScript Level 1 approximations of these
features and uses no PostScript Level 2 code. This may be required by some old printers and old versions of
Adobe Illustrator. The flag level1 can be toggled later by editing a single line in the PostScript output file to
force PostScript Level 1 interpretation. In the case of files containing level 2 code, the above features will not

344 gnuplot 6.1

appear or will be replaced by a note when this flag is set or when the interpreting program does not indicate
that it understands level 2 PostScript or higher. The flag level3 enables PNG encoding for bitmapped images,
which can reduce the output size considerably.

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins.

clip tells PostScript to clip all output to the bounding box; noclip is the default.

palfuncparam controls how set palette functions are encoded as gradients in the output. Analytic color
component functions (set via set palette functions) are encoded as linear interpolated gradients in the postscript
output: The color component functions are sampled at <samples> points and all points are removed from
this gradient which can be removed without changing the resulting colors by more than <maxdeviation>. For
almost every useful palette you may safely leave the defaults of<samples>=2000 and<maxdeviation>=0.003
untouched.

The default size for postscript output is 10 inches x 7 inches. The default for eps output is 5 x 3.5 inches. The
size option changes this to whatever the user requests. By default the X and Y sizes are taken to be in inches,
but other units are possibly (currently only cm). The BoundingBox of the plot is correctly adjusted to contain
the resized image. Screen coordinates always run from 0.0 to 1.0 along the full length of the plot edges as
specified by the size option.

Fonts listed by fontfile or fontfile add encapsulate the font definitions of the listed font from a postscript Type
1 or TrueType font file directly into the gnuplot output postscript file. Thus, the enclosed font can be used in
labels, titles, etc. See the section postscript fontfile (p. 345) for more details. With fontfile delete, a fontfile
is deleted from the list of embedded files. nofontfiles cleans the list of embedded fonts.

The postscript driver supports about 70 distinct pointtypes, selectable through the pointtype option on plot
and set linetype.

Several possibly useful files about gnuplot’s PostScript are included in the /docs/psdoc subdirectory of the
gnuplot distribution and at the distribution sites. These are "ps_symbols.gpi" (a gnuplot command file that,
when executed, creates the file "ps_symbols.ps" which shows all the symbols available through the postscript
terminal), "ps_guide.ps" (a PostScript file that contains a summary of the enhanced syntax and a page showing
what the octal codes produce with text and symbol fonts), "ps_file.doc" (a text file that contains a discussion
of the organization of a PostScript file written by gnuplot), and "ps_fontfile_doc.tex" (a LaTeX file which
contains a short documentation concerning the encapsulation of LaTeX fonts with a glyph table of the math
fonts).

A PostScript file is editable, so once gnuplot has created one, you are free to modify it to your heart’s desire.
See the editing postscript (p. 344) section for some hints.

Editing postscript

The PostScript language is a very complex language — far too complex to describe in any detail in this docu-
ment. Nevertheless there are some things in a PostScript file written by gnuplot that can be changed without
risk of introducing fatal errors into the file.

For example, the PostScript statement "/Color true def" (written into the file in response to the command set
terminal postscript color), may be altered in an obvious way to generate a black-and-white version of a plot.
Similarly line colors, text colors, line weights and symbol sizes can also be altered in straight-forward ways.
Text (titles and labels) can be edited to correct misspellings or to change fonts. Anything can be repositioned,
and of course anything can be added or deleted, but modifications such as these may require deeper knowledge
of the PostScript language.

gnuplot 6.1 345

The organization of a PostScript file written by gnuplot is discussed in the text file "ps_file.doc" in the docs/ps
subdirectory of the gnuplot source distribution.

Postscript fontfile
set term postscript ... fontfile {add|delete} <filename>

The fontfile or fontfile add option takes one file name as argument and encapsulates this file into the postscript
output in order to make this font available for text elements (labels, tic marks, titles, etc.). The fontfile delete
option also takes one file name as argument. It deletes this file name from the list of encapsulated files.

The postscript terminal understands some font file formats: Type 1 fonts in ASCII file format (extension
".pfa"), Type 1 fonts in binary file format (extension ".pfb"), and TrueType fonts (extension ".ttf"). pfa
files are understood directly, pfb and ttf files are converted on the fly if appropriate conversion tools are in-
stalled (see below). You have to specify the full filename including the extension. Each fontfile option takes
exact one font file name. This option can be used multiple times in order to include more than one font file.

The search order for find font files is (1) absolute pathname or current working directory (2) any of the direc-
tories specified by set loadpath (3) the directory specified by set fontpath (4) the directory given in environ-
mental variable GNUPLOT_FONTPATH.

To use the encapsulated font file you have to specify the font name, which normally is not the same as the file
name. When embedding a font file by using the fontfile option in interactive mode, the font name is printed
on the screen.

Example:
set term post "VAGRoundedBT_Regular" 14 fontfile "bvrr8a.pfa"
Font file 'bvrr8a.pfa' contains the font 'VAGRoundedBT_Regular'.
Location: /usr/share/fonts/Type1/bvrr8a.pfa

When using pfa or pfb fonts, you can also find it out by looking into the font file. There is a line simi-
lar to "/FontName /URWPalladioL-Bold def". The middle string without the slash is the fontname, here
"URWPalladioL-Bold". For TrueType fonts, this is not so easy since the font name is stored in a binary for-
mat. In addition, they often have spaces in the font names which is not supported by Type 1 fonts (in which
a TrueType is converted on the fly). The font names are changed in order to eliminate the spaces in the font-
names. The easiest way to find out which font name is generated for use with gnuplot, start gnuplot in interactive
mode and type in "set terminal postscript fontfile ’<filename.ttf>’".

For converting font files (either ttf or pfb) to pfa format, the conversion tool has to read the font from a file
and write it to standard output. If the output cannot be written to standard output, on-the-fly conversion is not
possible.

For pfb files "pfbtops" is a tool which can do this. If this program is installed on your system the on the fly con-
version should work. Just try to encapsulate a pfb file. If the compiled in program call does not work correctly
you can specify how this program is called by defining the environment variable GNUPLOT_PFBTOPFA e.g.
to "pfbtops %s". The%s will be replaced by the font file name and thus has to exist in the string.

If you don’t want to do the conversion on the fly but get a pfa file of the font you can use the tool "pfb2pfa"
which is written in simple c and should compile with any c compiler. It is available from many ftp servers, e.g.
ftp://ftp.dante.de/tex-archive/fonts/utilities/ps2mf/

In fact, "pfbtopfa" and "pfb2ps" do the same job. "pfbtopfa" puts the resulting pfa code into a file, whereas
"pfbtops" writes it to standard output.

TrueType fonts are converted into Type 1 pfa format, e.g. by using the tool "ttf2pt1" which is available from
http://ttf2pt1.sourceforge.net/

ftp://ftp.dante.de/tex-archive/fonts/utilities/ps2mf/
http://ttf2pt1.sourceforge.net/

346 gnuplot 6.1

If the builtin conversion does not work, the conversion command can be changed by the environment variable
GNUPLOT_TTFTOPFA. For usage with ttf2pt1 it may be set to "ttf2pt1 -a -e -W 0 %s - ". Here again,%s
stands for the file name.

For special purposes you also can use a pipe (if available for your operating system). Therefore you start the
file name definition with the character "<" and append a program call. This program has to write pfa data to
standard output. Thus, a pfa file may be accessed by set fontfile "< cat garamond.pfa".

For example, including Type 1 font files can be used for including the postscript output in LaTeX docu-
ments. The "european computer modern" font (which is a variant of the "computer modern" font) is avail-
able in pfb format from any CTAN server, e.g. ftp://ftp.dante.de/tex-archive/fonts/ps-
type1/cm-super/

For example, the file "sfrm1000.pfb" contains the normal upright fonts with serifs in the design size 10pt (font
name "SFRM1000"). The computer modern fonts, which are still necessary for mathematics, are available
from ftp://ftp.dante.de/tex-archive/fonts/cm/ps-type1/bluesky

With these you can use any character available in TeX. However, the computer modern fonts have a strange
encoding. (This is why you should not use cmr10.pfb for text, but sfrm1000.pfb instead.) The usage of TeX
fonts is shown in one of the demos. The file "ps_fontfile_doc.tex" in the /docs/psdoc subdirectory of the
gnuplot source distribution contains a table with glyphs of the TeX mathfonts.

If the font "CMEX10" is embedded (file "cmex10.pfb") gnuplot defines the additional font "CMEX10-
Baseline". It is shifted vertically in order to fit better to the other glyphs (CMEX10 has its baseline at the top
of the symbols).

Postscript prologue

Each PostScript output file includes a %%Prolog section and possibly some additional user-defined sections
containing, for example, character encodings. These sections are copied from a set of PostScript prologue files
that are either compiled into the gnuplot executable or stored elsewhere on your computer. A default directory
where these files live is set at the time gnuplot is built. However, you can override this default either by using
the gnuplot command set psdir or by defining an environment variable GNUPLOT_PS_DIR. See set psdir
(p. 256).

Postscript adobeglyphnames

This setting is only relevant to PostScript output with UTF-8 encoding. It controls the names used to describe
characters with Unicode entry points higher than 0x00FF. That is, all characters outside of the Latin1 set. In
general unicode characters do not have a unique name; they have only a unicode identification code. However,
Adobe have a recommended scheme for assigning names to certain ranges of characters (extended Latin, Greek,
etc). Some fonts use this scheme, others do not. By default, gnuplot will use the Adobe glyph names. E.g. the
lower case Greek letter alpha will be called /alpha. If you specific noadobeglyphnames then instead gnuplot
will use /uni03B1 to describe this character. If you get this setting wrong, the character may not be found even
if it is present in the font. It is probably always correct to use the default for Adobe fonts, but for other fonts
you may have to try both settings. See also fontfile (p. 345).

ftp://ftp.dante.de/tex-archive/fonts/ps-type1/cm-super/
ftp://ftp.dante.de/tex-archive/fonts/ps-type1/cm-super/
ftp://ftp.dante.de/tex-archive/fonts/cm/ps-type1/bluesky

gnuplot 6.1 347

Pslatex and pstex

The pslatex driver generates output for further processing by LaTeX, while the pstex driver generates output
for further processing by TeX. pslatex uses \specials understandable by dvips and xdvi. Figures generated by
pstex can be included in any plain-based format (including LaTeX).

Syntax:
set terminal [pslatex | pstex] {default}
set terminal [pslatex | pstex]

{rotate | norotate}
{auxfile | noauxfile}
{level1 | leveldefault | level3}
{color | colour | monochrome}
{background <rgbcolor> | nobackground}
{dashlength | dl <DL>}
{linewidth | lw <LW>} {pointscale | ps <PS>}
{rounded | butt}
{clip | noclip}
{palfuncparam <samples>{,<maxdeviation>}}
{size <XX>{unit},<YY>{unit}}
{<font_size>}

If you see the error message
"Can't find PostScript prologue file ... "

Please see and follow the instructions in postscript prologue (p. 346).

The option color enables color, while monochrome prefers black and white drawing elements. Further,
monochrome uses gray palette but it does not change color of objects specified with an explicit colorspec.
dashlength or dl scales the length of dashed-line segments by<DL>, which is a floating-point number greater
than zero. linewidth or lw scales all linewidths by <LW>.

By default the generated PostScript code uses language features that were introduced in PostScript Level 2,
notably filters and pattern-fill of irregular objects such as filledcurves. PostScript Level 2 features are condi-
tionally protected so that PostScript Level 1 interpreters do not issue errors but, rather, display a message or
a PostScript Level 1 approximation. The level1 option substitutes PostScript Level 1 approximations of these
features and uses no PostScript Level 2 code. This may be required by some old printers and old versions of
Adobe Illustrator. The flag level1 can be toggled later by editing a single line in the PostScript output file to
force PostScript Level 1 interpretation. In the case of files containing level 2 code, the above features will not
appear or will be replaced by a note when this flag is set or when the interpreting program does not indicate
that it understands level 2 PostScript or higher. The flag level3 enables PNG encoding for bitmapped images,
which can reduce the output size considerably.

rounded sets line caps and line joins to be rounded; butt is the default, butt caps and mitered joins.

clip tells PostScript to clip all output to the bounding box; noclip is the default.

palfuncparam controls how set palette functions are encoded as gradients in the output. Analytic color
component functions (set via set palette functions) are encoded as linear interpolated gradients in the postscript
output: The color component functions are sampled at <samples> points and all points are removed from
this gradient which can be removed without changing the resulting colors by more than <maxdeviation>. For
almost every useful palette you may safely leave the defaults of<samples>=2000 and<maxdeviation>=0.003
untouched.

The default size for postscript output is 10 inches x 7 inches. The default for eps output is 5 x 3.5 inches. The
size option changes this to whatever the user requests. By default the X and Y sizes are taken to be in inches,

348 gnuplot 6.1

but other units are possibly (currently only cm). The BoundingBox of the plot is correctly adjusted to contain
the resized image. Screen coordinates always run from 0.0 to 1.0 along the full length of the plot edges as
specified by the size option.

if rotate is specified, the y-axis label is rotated. <font_size> is the size (in pts) of the desired font.

If auxfile is specified, it directs the driver to put the PostScript commands into an auxiliary file instead of
directly into the LaTeX file. This is useful if your pictures are large enough that dvips cannot handle them.
The name of the auxiliary PostScript file is derived from the name of the TeX file given on the set output
command; it is determined by replacing the trailing .tex (actually just the final extent in the file name) with .ps
in the output file name, or, if the TeX file has no extension, .ps is appended. The .ps is included into the .tex
file by a \special{psfile=...} command. Remember to close the output file before next plot unless inmultiplot
mode.

The pslatex driver offers a special way of controlling text positioning: (a) If any text string begins with ’{’,
you also need to include a ’}’ at the end of the text, and the whole text will be centered both horizontally and
vertically by LaTeX. (b) If the text string begins with ’[’, you need to continue it with: a position specification
(up to two out of t,b,l,r), ’]{’, the text itself, and finally, ’}’. The text itself may be anything LaTeX can typeset
as an LR-box. \rule{}{}’s may help for best positioning.
The options not described here are identical to the Postscript terminal. Look there if you want to know what
they do.

Examples:
set term pslatex monochrome rotate # set to defaults

To write the PostScript commands into the file "foo.ps":
set term pslatex auxfile
set output "foo.tex"; plot ...; set output

About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really best):
set title '\LaTeX\ -- $ \gamma $'

Force centering both horizontally and vertically:
set label '{\LaTeX\ -- $ \gamma $}' at 0,0

Specify own positioning (top here):
set xlabel '[t]{\LaTeX\ -- $ \gamma $}'

The other label – account for long ticlabels:
set ylabel '[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}'

Linewidths and pointsizes may be changed with set style line.

Pstricks

The pstricks driver is intended for use with the "pstricks.sty" macro package for TeX or LaTeX. You need
"pstricks.sty", and, of course, a printer that understands PostScript, or a converter such as Ghostscript.

PSTricks is available at http://tug.org/PSTricks/.

This driver definitely does not come close to using the full capability of the PSTricks package.

Syntax:

http://tug.org/PSTricks/

gnuplot 6.1 349

set terminal pstricks
{unit | size <XX>{unit},<YY>{unit}}
{standalone | input}
{blacktext | colortext | colourtext}
{linewidth <lw>} {rounded | butt}
{pointscale <ps>}
{psarrows | gparrows}
{background <rgbcolor>}
{pstricks | pdftricks2}

The unit option produces a plot with internal dimensions 1x1. The default is a plot of size 5in,3in.

standalone produces a LaTeX file with possibly multiple plots, ready to be compiled. The default is input to
produce a TeX file which can be included.

blacktext forces all text to be written in black. colortext enables colored text. The default is blacktext.

rounded sets line caps and line joins to be rounded. butt sets butt caps and mitered joins and is the default.

linewidth and pointscale scale the width of lines and the size of point symbols, respectively.

psarrows draws arrows using PSTricks commands which are shorter but do not offer all options. gparrows
selects drawing arrows using gnuplot’s own routine for full functionality instead.

With the option pdftricks2 you can create output for the pdftricks2 macro package, which can be used with
pdflatex/lualatex. Otherwise, output for the pstricks package with traditional tex/latex or xelatex is produced.

The old hacktext option has been replaced by the new default format %h.

Transparency requires support by Ghostscript or conversion to PDF.

Qt

The qt terminal device generates output in a separate window with the Qt library. Syntax:
set term qt {<n>}

{size <width>,<height>}
{position <x>,<y>}
{title "title"}
{font } {{no}enhanced}
{rounded|butt}
{{no}replotonresize}
{{no}antialias}
{linewidth <lw>} {dashlength <dl>}
{{no}persist} {{no}raise} {{no}ctrl}
{close}
{widget <id>}

Multiple plot windows are supported: set terminal qt <n> directs the output to plot window number n.

The default window title is based on the window number. This title can also be specified with the keyword
"title".

Plot windows remain open even when the gnuplot driver is changed to a different device. A plot window can be
closed by pressing the letter ’q’ while that window has input focus, by choosing close from a window manager
menu, or with set term qt <n> close.

The size of the plot area is given in pixels, it defaults to 640x480. In addition to that, the actual size of the
window also includes the space reserved for the toolbar and the status bar. When you resize a window, the plot

350 gnuplot 6.1

is immediately scaled to fit in the new size of the window. The qt terminal scales the whole plot, including
fonts and linewidths, and keeps its global aspect ratio constant. If you type replot, click the replot icon in the
terminal toolbar or type a new plot command, the new plot will completely fit in the window and the font size
and the linewidths will be reset to their defaults.

The position option can be used to set the position of the plot window. The position option only applies to the
first plot after the set term command.

The active plot window (the one selected by set term qt <n>) is interactive. Its behaviour is shared with
other terminal types. See mouse (p. 227) for details. It also has some extra icons, which are supposed to be
self-explanatory.

This terminal supports an enhanced text mode, which allows font and other formatting commands (subscripts,
superscripts, etc.) to be embedded in labels and other text strings. The enhanced text mode syntax is shared
with other gnuplot terminal types. See enhanced (p. 39) for more details.

 is in the format "FontFace,FontSize", i.e. the face and the size comma-separated in a single string.
FontFace is a usual font face name, such as ’Arial’. If you do not provide FontFace, the qt terminal will use
’Sans’. FontSize is the font size, in points. If you do not provide it, the qt terminal will use a size of 9 points.

For example :
set term qt font "Arial,12"
set term qt font "Arial" # to change the font face only
set term qt font ",12" # to change the font size only
set term qt font "" # to reset the font name and size

The dashlength affects only custom dash patterns, not Qt’s built-in set.

To obtain the best output possible, the rendering involves three mechanisms : antialiasing, oversampling and
hinting. Oversampling combined with antialiasing provides subpixel accuracy, so that gnuplot can draw a line
from non-integer coordinates. This avoids wobbling effects on diagonal lines (’plot x’ for example). Hinting
avoids the blur on horizontal and vertical lines caused by oversampling. The terminal will snap these lines to
integer coordinates so that a one-pixel-wide line will actually be drawn on one and only one pixel.

butt instructs the driver to use a line drawing method that does not overshoot the desired end point of a line.
This setting is only applicable for line widths greater than 1. This setting is most useful when drawing horizontal
or vertical lines. Default is rounded.

The option replotonresize replots the data when the plot window is resized. Without this option, the even-
aspect-ratio scaling may result in the plot filling only part of the window after resizing. With this option, gnuplot
does a full replot on each resize event, resulting in better space utilization. This option is generally desirable,
unless the potentially CPU-intensive replotting during resizing is a concern. Replots can be manually initiated
with hotkey ’e’ or the ’replot’ command.

By default, the window is raised to the top of your desktop when a plot is drawn. This can be controlled with
the keyword "raise". The keyword "persist" will prevent gnuplot from exiting before you explicitly close all
the plot windows.

The <space> key raises the gnuplot console window [MS Windows only]. The ’q’ key closes the plot window.
These hot keys can be changed to ctrl-space and ctrl-q using the terminal option keyword "{no}ctrl". However
the preferred way to select ctrl-q rather than ’q’ is to use the toggle in the tools widget of the plot window.

The gnuplot outboard driver, gnuplot_qt, is searched in a default place chosen when the program is compiled.
You can override that by defining the environment variable GNUPLOT_DRIVER_DIR.

gnuplot 6.1 351

Regis

Note: legacy terminal. The regis terminal device generates output in the REGIS graphics language. It has the
option of using 4 (the default) or 16 colors.

Syntax:
set terminal regis {4 | 16}

Sixelgd

Syntax:
set terminal sixelgd

{{no}enhanced} {{no}truecolor} {rounded|butt}
{linewidth <lw>} {dashlength <dl>}
{tiny | small | medium | large | giant}
{font "<face> {,<pointsize>}"} {fontscale <scale>}
{size <x>,<y>} {anchor|scroll} {{no}transparent}
{background <rgb_color>}

The sixel output format was originally used by DEC terminals and printers. The gnuplot sixelgd driver produces
a sixel output stream by converting a PNG image created internally using the gd library. The sixel output stream
can be viewed in the terminal as it is created or it can be written to a file so that it can be replayed later by
echoing the file to the terminal.

The sixel terminal is also useful for displaying gnuplot graphics on the linux console when no windowing system
or graphics display manager is active. See linux console (p. 333).

The linewidth and dashlength options are scaling factors that affect all lines drawn. They are multiplied by
values requested in drawing commands.

By default the sixel output uses 16 indexed colors. The truecolor option instead creates a 24-bit RGB png image
that is mapped down onto 256 colors in the output sixel image. Transparent fill styles require the truecolor
option. See fillstyle (p. 261).

butt instructs the driver to use a line drawingmethod that does not overshoot the desired end point of a line. This
setting is only relevant for line widths greater than 1. The alternative is rounded, which produces somewhat
more uniform curved lines but can be much slower.

The details of font selection in the gdlib terminals are complicated. For more information please see fonts
(p. 61).

The output plot size <x,y> is given in pixels. It defaults to 640x480, which is probably smaller than the size
of your terminal window.

transparent instructs the driver to make the background color transparent, but most terminal emulators do not
support this. Default is notransparent.

Gnuplot’s sixelgd output has been successfully tested with terminal emulators including konsole, mlterm,
mintty, and the vt340 mode of xterm (note that distributed copies of xterm may not have been configured
to support sixel graphics). Sixel support in the KDE konsole terminal was added in version 22.04.0.

By default (anchor) each plot is drawn by overwriting the area at the top left of the window. This allows
redrawing to create an in-place animation and pseudo-mousing using the arrow keys during pause mouse.
The scroll option instead starts each plot at the current cursor position so that successive plots scroll with any
intervening text.

352 gnuplot 6.1

Svg

This terminal produces files in the W3C Scalable Vector Graphics format.

Syntax:
set terminal svg {size <x>,<y> {|fixed|dynamic}}

{mouse} {standalone | jsdir <dirname>}
{name <plotname>}
{font "<fontname>{,<fontsize>}"} {{no}enhanced}
{fontscale <multiplier>}
{rounded|butt|square} {solid|dashed} {linewidth <lw>}
{background <rgb_color>}
{description "<description>"}

where <x> and <y> are the size of the SVG plot to generate, dynamic allows a svg-viewer to resize plot,
whereas the default setting, fixed, will request an absolute size.

linewidth <w> increases the width of all lines used in the figure by a factor of <w>.

 is the name of the default font to use (default Arial) and <fontsize> is the font size (in points, default
12). SVG viewing programs may substitute other fonts when the file is displayed.

The enhanced text mode syntax is shared with other gnuplot terminal types. See enhanced (p. 39) for more
details.

The mouse option tells gnuplot to add support for mouse tracking and for toggling individual plots on/off by
clicking on the corresponding key entry. By default this is done by including a link that points to a script in a
local directory, usually /usr/local/share/gnuplot/<version>/js. You can change this by using the jsdir option to
specify either a different local directory or a general URL. The latter is usually appropriate if you are embedding
the svg into a web page. Alternatively, the standalone option embeds the mousing code in the svg document
itself rather than linking to an external resource.

When an SVG file will be used in conjunction with external files, e.g. if it is referenced by javascript code in a
web page or parent document, then a unique name is required to avoid potential conflicting references to other
SVG plots. Use the name option to ensure uniqueness.

If a description is provided, it is used in the XML desc tag of the output.

Svga

Legacy terminal. The svga terminal driver supports PCs with SVGA graphics. It is typically only compiled
with DJGPP and uses the GRX graphics library. There is also a variant for Windows 32bit, which is mainly
used for debugging. The underlying library also supports X11, Linux console and SDL, but these targets are
currently not supported.

Syntax:
set terminal svga {font "<fontname>"}

{{no}enhanced}
{background <rgb color>}
{linewidth|lw <lw>}
{pointscale|ps <scale>}
{fontscale|fs <scale>}

Enhanced text support can be activated using the enhanced option, see enhanced text (p. 39). Note that
changing the font size in enhanced text is currently not supported. Hence, super- and subscripts will have the
same size.

gnuplot 6.1 353

The linewidth parameter scales the width of lines. The pointscale parameter sets the scale factor for point
symbols. You can use fontscale to scale the bitmap font. This might be useful if you have a hi-res display.
Note that integer factors give best results.

Tek40

This family of terminal drivers supports a variety of VT-like terminals. tek40xx supports Tektronix 4010 and
others as well as most TEK emulators. vttek supports VT-like tek40xx terminal emulators. The following
are present only if selected when gnuplot is built: kc-tek40xx supports MS-DOS Kermit Tek4010 terminal
emulators in color; km-tek40xx supports them in monochrome. selanar supports Selanar graphics. bitgraph
supports BBN Bitgraph terminals. None have any options.

Tek410x

The tek410x terminal driver supports the 410x and 420x family of Tektronix terminals. It has no options.

Texdraw

The texdraw terminal driver supports the (La)TeX texdraw environment. It is intended for use with the texdraw
package, see https://www.ctan.org/tex-archive/graphics/texdraw/ .

set terminal texdraw
{size <XX>{unit},<YY>{unit}}
{standalone | input}
{blacktext | colortext | colourtext}
{linewidth <lw>} {rounded | butt}
{pointscale <ps>}
{psarrows | gparrows} {texpoints | gppoints}
{background <rgbcolor>}

Note: Graphics are in grayscale only. Text is always black. Boxes and polygons are filled using solid gray levels
only. Patterns are not available.

Points, among other things, are drawn using the LaTeX commands "\Diamond" and "\Box". These com-
mands no longer belong to the LaTeX2e core; they are included in the latexsym package, which is part of the
base distribution and thus part of any LaTeX implementation. Please do not forget to use this package. Other
point types use symbols from the amssymb package. For compatibility with plain TeX you need to specify the
gppoints option.

standalone produces a LaTeX file with possibly multiple plots, ready to be compiled. The default is input to
produce a TeX file which can be included.

blacktext forces all text to be written in black. colortext enables "colored" text. The default is blacktext and
"color" means grayscale really.

rounded sets line caps and line joins to be rounded; butt sets butt caps and mitered joins and is the default.

linewidth and pointscale scale the width of lines and the size of point symbols, respectively. pointscale only
applies to gppoints.

psarrows draws arrows using TeXdraw commands which are shorter but do not offer all options. gparrows
selects drawing arrows using gnuplot’s own routine for full functionality instead. Similarly, texpoints, and
gppoints select LaTeX symbols or gnuplot’s point drawing routines.

354 gnuplot 6.1

Tgif

Legacy terminal (present only if gnuplot was configured –with-tgif). Tgif is/was an Xlib based interactive 2-D
vector graphics drawing tool also capable of importing and marking up bitmap images.

The tgif driver supports a choice of font and font size and multiple graphs on the page. The proportions of the
axes are not changed.

Syntax:
set terminal tgif {portrait | landscape | default} {<[x,y]>}

{monochrome | color}
{{linewidth | lw} <LW>}
{solid | dashed}
{font "<fontname>{,<fontsize>}"}

where <[x,y]> specifies the number of graphs in the x and y directions on the page, color enables color,
linewidth scales all linewidths by <LW>, "<fontname>" is the name of a valid PostScript font, and
<fontsize> specifies the size of the PostScript font. defaults sets all options to their defaults: portrait, [1,1],
color, linewidth 1.0, dashed, "Helvetica,18".

The solid option is usually preferred if lines are colored, as they often are in the editor. Hardcopy will be
black-and-white, so dashed should be chosen for that.

Multiplot is implemented in two different ways.

The first multiplot implementation is the standard gnuplot multiplot feature:
set terminal tgif
set output "file.obj"
set multiplot
set origin x01,y01
set size xs,ys
plot ...

...
set origin x02,y02
plot ...
unset multiplot

See set multiplot (p. 229) for further information.

The second version is the [x,y] option for the driver itself. The advantage of this implementation is that ev-
erything is scaled and placed automatically without the need for setting origins and sizes; the graphs keep their
natural x/y proportions of 3/2 (or whatever is fixed by set size).

If both multiplot methods are selected, the standard method is chosen and a warning message is given.

Examples of single plots (or standard multiplot):
set terminal tgif # defaults
set terminal tgif "Times-Roman,24"
set terminal tgif landscape
set terminal tgif landscape solid

Examples using the built-in multiplot mechanism:
set terminal tgif portrait [2,4] # portrait; 2 plots in the x-

and 4 in the y-direction
set terminal tgif [1,2] # portrait; 1 plot in the x-

and 2 in the y-direction
set terminal tgif landscape [3,3] # landscape; 3 plots in both

directions

gnuplot 6.1 355

Tikz

This driver creates output for use with the TikZ package of graphics macros in TeX. It is currently implemented
via an external lua script, and set term tikz is a short form of the command set term lua tikz. See term lua
tikz (p. 334) for a complete description. Use the command set term tikz help to print terminal options.

Tkcanvas

This terminal driver generates Tk canvas widget commands in one of the following scripting languages: Tcl
(default), Perl, Python, Ruby, or REXX.

Syntax:
set terminal tkcanvas {tcl | perl | perltkx | python | ruby | rexx}

{standalone | input}
{interactive}
{rounded | butt}
{nobackground | background <rgb color>}
{{no}rottext}
{size <width>,<height>}
{{no}enhanced}
{externalimages | pixels}

Execute the following sequence of Tcl/Tk commands to display the result:
package require Tk
the following two lines are only required to support external images
package require img::png
source resize.tcl
source plot.tcl
canvas .c -width 800 -height 600
pack .c
gnuplot .c

Or, for Perl/Tk use a program like this:
use Tk;
my $top = MainWindow->new;
my $c = $top->Canvas(-width => 800, -height => 600)->pack;
my $gnuplot = do "plot.pl";
$gnuplot->($c);
MainLoop;

Or, for Perl/Tkx use a program like this:
use Tkx;
my $top = Tkx::widget->new(".");
my $c = $top->new_tk__canvas(-width => 800, -height => 600);
$c->g_pack;
my $gnuplot = do "plot.pl";
$gnuplot->($c);
Tkx::MainLoop();

Or, for Python/Tkinter use a program like this:
from tkinter import *
from tkinter import font
root = Tk()
c = Canvas(root, width=800, height=600)

356 gnuplot 6.1

c.pack()
exec(open('plot.py').read())
gnuplot(c)
root.mainloop()

Or, for Ruby/Tk use a program like this:
require 'tk'
root = TkRoot.new { title 'Ruby/Tk' }
c = TkCanvas.new(root, 'width'=>800, 'height'=>600) { pack { } }
load('plot.rb')
gnuplot(c)
Tk.mainloop

Or, for Rexx/Tk use a program like this:
/**/
call RxFuncAdd 'TkLoadFuncs', 'rexxtk', 'TkLoadFuncs'
call TkLoadFuncs
cv = TkCanvas('.c', '-width', 800, '-height', 600)
call TkPack cv
call 'plot.rex' cv
do forever

cmd = TkWait()
if cmd = 'AWinClose' then leave
interpret 'call' cmd

end

The code generated by gnuplot (in the above examples, this code is written to "plot.<ext>") contains the
following procedures:

gnuplot(canvas)
takes the name of a canvas as its argument.
When called, it clears the canvas, finds the size of the canvas and
draws the plot in it, scaled to fit.

gnuplot_plotarea()
returns a list containing the borders of the plotting area
(xleft, xright, ytop, ybot) in canvas screen coordinates. It works only for 2-

dimensional plotting (`plot`).

gnuplot_axisranges()
returns the ranges of the two axes in plot coordinates
(x1min, x1max, y1min, y1max, x2min, x2max, y2min, y2max).
It works only for 2-dimensional plotting (`plot`).

You can create self-contained, minimal scripts using the standalone option. The default is inputwhich creates
scripts which have to be source’d (or loaded or called or whatever the adequate term is for the language selected).

If the interactive option is specified, mouse clicking on a line segment will print the coordinates of its midpoint
to stdout. The user can supersede this behavior by supplying a procedure user_gnuplot_coordinates which takes
the following arguments:
win id x1s y1s x2s y2s x1e y1e x2e y2e x1m y1m x2m y2m,

i.e. the name of the canvas and the id of the line segment followed by the coordinates of its start and end point
in the two possible axis ranges; the coordinates of the midpoint are only filled for logarithmic axes.

gnuplot 6.1 357

By default the canvas is transparent, but an explicit background color can be set with the background option.

rounded sets line caps and line joins to be rounded; butt is the default: butt caps and mitered joins.

Text at arbitrary angles can be activated with the rottext option, which requires Tcl/Tk 8.6 or later. The default
is norottext.

The size option tries to optimize the tic and font sizes for the given canvas size. By default an output size of
800 x 600 pixels is assumed.

enhanced selects enhanced text processing (default), but is currently only available for Tcl.

The pixels (default) option selects the failsafe pixel-by-pixel image handler, see also image pixels (p. 111).
The externalimages option saves images as external png images, which are later loaded and scaled by the
tkcanvas code. This option is only available for Tcl and display may be slow in some situations since the Tk
image handler does not provide arbitrary scaling. Scripts need to source the provided rescale.tcl.

Interactive mode is not yet implemented for Python/Tk and Rexx/Tk. Interactive mode for Ruby/Tk does not
yet support user_gnuplot_coordinates.

Webp

The webp terminal generates either a single frame or an animation. The actual drawing is done via cairo, a 2D
graphics library, and pango, a library for laying out and rendering text.

Syntax:
set term webp

{size <x_pixels>,<y_pixels>}
{font } {fontscale <scale>} {{no}enhanced}
{{no}transparent} {background <rgbcolor>
{linewidth <lw>} {rounded|butt|square} {dashlength <dl>}
{pointscale <ps>}

{{no}animate {quality <q>} {delay <msec>} {loop <n>}}

Individual frames produced by the webp terminal are first created as 32-bit RGB + alpha channel images using
routines shared with the pngcairo terminal. See set term pngcairo (p. 341) for more details about font and
terminal options. The frames are then converted to webp format on output.

The animate option produces a webp file containing multiple frames, each one created by a separate plot or
splot command. The animation sequence is terminated by the next set output or set terminal command.

quality (1..100) affects the size of the output file. q values from 1 to 74 use lossy compression; smaller values
produce a smaller file at the cost of lost detail in the rendered image. q values from 75 to 100 use lossless
compression. All produce the same image quality (lossless!). Larger values spend more computing time for
diminishing benefit in reduced file size. The default is 75, lossless compression without excessive computation.

The delay suboption sets the delay time in milliseconds between frames during playback (default 50 millisec-
onds).

The loop suboption specifies how many times the animation sequence should be repeated during playback. The
default (0) gives a continuous loop.

Windows

The windows terminal is a fast interactive terminal driver that uses the Windows GDI to draw and write text.
The cross-platform terminal wxt and terminal qt are also supported on Windows.

358 gnuplot 6.1

Syntax:

set terminal windows {<n>}
{color | monochrome}
{solid | dashed}
{rounded | butt}
{enhanced | noenhanced}
{font <fontspec>}
{fontscale <scale>}
{linewidth <scale>}
{pointscale <scale>}
{background <rgb color>}
{title "Plot Window Title"}
{{size | wsize} <width>,<height>}
{position <x>,<y>}
{docked {layout <rows>,<cols>} | standalone}
{close}

Multiple plot windows are supported: set terminal win <n> directs the output to plot window number n.

color and monochrome select colored or mono output, dashed and solid select dashed or solid lines. Note
that color defaults to solid, whereas monochrome defaults to dashed. rounded sets line caps and line joins
to be rounded; butt is the default, butt caps and mitered joins. enhanced enables enhanced text mode features
(subscripts, superscripts and mixed fonts, see enhanced text (p. 39) for more information). <fontspec> is
in the format "<fontface>,<fontsize>", where "<fontface>" is the name of a valid Windows font, and
<fontsize> is the size of the font in points and both components are optional. Note that in previous versions of
gnuplot the font statement could be left out and<fontsize> could be given as a number without double quotes.
This is no longer supported. linewidth, fontscale, pointscale can be used to scale the width of lines, the size
of text, or the size of the point symbols. title changes the title of the graph window. size defines the width and
height of the window’s drawing area in pixels, wsize defines the actual size of the window itself and position
defines the origin of the window i.e. the position of the top left corner on the screen (again in pixel). These
options override any default settings from the wgnuplot.ini file.

docked embeds the graph window in the wgnuplot text window and the size and position options are ignored.
Note that docked is not available for console-mode gnuplot. Setting this option changes the default for new
windows. The initial default is standalone. The layout option allows to reserve a minimal number of columns
and rows for graphs in docked mode. If there are more graphs than fit the given layout, additional rows will be
added. Graphs are sorted by the numerical id, filling rows first.

Other options may be changed using the graph-menu or the initialization file wgnuplot.ini.

The Windows version normally terminates immediately as soon as the end of any files given as command line
arguments is reached (i.e. in non-interactive mode), unless you specify - as the last command line option. It
will also not show the text-window at all, in this mode, only the plot. By giving the optional argument -persist
(same as for gnuplot under x11; former Windows-only options /noend or -noend are still accepted as well),
will not close gnuplot. Contrary to gnuplot on other operating systems, gnuplot’s interactive command line is
accessible after the -persist option.

The plot window remains open when the gnuplot terminal is changed with a set term command. The plot
window can be closed with set term windows close.

gnuplot supports different methods to create printed output onWindows, seewindows printing (p. 359). The
windows terminal supports data exchange with other programs via clipboard and EMF files, see graph-menu
(p. 359). You can also use the terminal emf to create EMF files.

gnuplot 6.1 359

Graph-menu

The gnuplot graph window has the following options on a pop-up menu accessed by pressing the right mouse
button(*) or selecting Options from the system menu or the toolbar:

Copy to Clipboard copies a bitmap and an enhanced metafile picture.

Save as EMF... allows the user to save the current graph window as enhanced metafile (EMF or EMF+).

Save as Bitmap... allows the user to save a copy of the graph as bitmap file.

Print... prints the graphics windows using a Windows printer driver and allows selection of the printer and
scaling of the output. See also windows printing (p. 359).

Bring to Top when checked raises the graph window to the top after every plot.

Color when checked enables color output. When unchecked it forces all grayscale output. This is e.g. useful
to test appearance of monochrome printouts.

The GDI backend which uses the classic GDI API is deprecated and has been disabled in this version.

GDI+ backend draws to the screen using the GDI+ Windows API. It supports full antialiasing, oversampling,
transparency and custom dash patterns. This was the default in versions 5.0 and 5.2.

Direct2D backend uses Direct2D & DirectWrite APIs to draw. It uses graphic card acceleration and is hence
typically much faster. Since Direct2D can not create EMF data, saving and copying to clipboard of EMF data
fall back to GDI+ while bitmap data is generated by D2d. This is the recommended and default backend since
version 5.3.

Oversampling draws diagonal lines at fractional pixel positions to avoid "wobbling" effects. Vertical or hori-
zontal lines are still snapped to integer pixel positions to avoid blurry lines.

Antialiasing enables smoothing of lines and edges. Note that this slows down drawing. Antialiasing of
polygons is enabled by default but might slow down drawing with the GDI+ backend.

Fast rotation switches antialiasing temporarily off while rotating the graph with the mouse. This speeds up
drawing considerably at the expense of an additional redraw after releasing the mouse button.

Background... sets the window background color.

Choose Font... selects the font used in the graphics window.

Update wgnuplot.ini saves the current window locations, window sizes, text window font, text window font
size, graph window font, graph window font size, background color to the initialization file wgnuplot.ini.

(*) Note that this menu is only available by pressing the right mouse button with unset mouse.

Printing

In order of preference, graphs may be printed in the following ways:

1. Use the gnuplot command set terminal to select a printer and set output to redirect output to a file.

2. Select the Print... command from the gnuplot graph window. An extra command screendump does this
from the text window.

3. If set output "PRN" is used, output will go to a temporary file. When you exit from gnuplot or when you
change the output with another set output command, a dialog box will appear for you to select a printer port. If
you choose OK, the output will be printed on the selected port, passing unmodified through the print manager.

360 gnuplot 6.1

It is possible to accidentally (or deliberately) send printer output meant for one printer to an incompatible
printer.

Text-menu

The gnuplot text window has the following options on a pop-up menu accessed by pressing the right mouse
button or selecting Options from the system menu:

Copy to Clipboard copies marked text to the clipboard.

Paste copies text from the clipboard as if typed by the user.

Choose Font... selects the font used in the text window.

System Colors when selected makes the text window honor the System Colors set using the Control Panel.
When unselected, text is black or blue on a white background.

Wrap long lines when selected lines longer than the current window width are wrapped.

Update wgnuplot.ini saves the current settings to the initialisation file wgnuplot.ini, which is located in the
user’s application data directory.

Wgnuplot.mnu

If the menu file wgnuplot.mnu is found in the same directory as gnuplot, then the menu specified in wgnu-
plot.mnu will be loaded. Menu commands:

[Menu] starts a new menu with the name on the following line.
[EndMenu] ends the current menu.
[--] inserts a horizontal menu separator.
[|] inserts a vertical menu separator.
[Button] puts the next macro on a push button instead of a menu.

Macros take two lines with the macro name (menu entry) on the first line and the macro on the second line.
Leading spaces are ignored. Macro commands:

[INPUT] Input string with prompt terminated by [EOS] or {ENTER}
[EOS] End Of String terminator. Generates no output.
[OPEN] Get name of a file to open, with the title of the dialog

terminated by [EOS], followed by a default filename terminated
by [EOS] or {ENTER}.

[SAVE] Get name of a file to save. Parameters like [OPEN]
[DIRECTORY] Get name of a directory, with the title of the dialog

terminated by [EOS] or {ENTER}

Macro character substitutions:

{ENTER} Carriage Return '\r'
{TAB} Tab '\011'
{ESC} Escape '\033'
{^A} '\001'
...
{^_} '\031'

Macros are limited to 256 characters after expansion.

gnuplot 6.1 361

Wgnuplot.ini

TheWindows text window and thewindows terminal will read some of their options from the [WGNUPLOT]
section of wgnuplot.ini. This file is located in the user’s application data directory. Here’s a sample wgnu-
plot.ini file:

[WGNUPLOT]
TextOrigin=0 0
TextSize=640 150
TextFont=Consolas,9
TextWrap=1
TextLines=400
TextMaximized=0
SysColors=0
GraphOrigin=0 150
GraphSize=640 330
GraphFont=Tahoma,10
GraphColor=1
GraphToTop=1
GraphGDI+=1
GraphD2D=0
GraphGDI+Oversampling=1
GraphAntialiasing=1
GraphPolygonAA=1
GraphFastRotation=1
GraphBackground=255 255 255
DockVerticalTextFrac=350
DockHorizontalTextFrac=400

These settings apply to the wgnuplot text-window only. The TextOrigin and TextSize entries specify the
location and size of the text window. If TextMaximized is non-zero, the window will be maximized.

The TextFont entry specifies the text window font and size.

The TextWrap entry selects wrapping of long text lines.

The TextLines entry specifies the number of (unwrapped) lines the internal buffer of the text window can hold.
This value currently cannot be changed from within wgnuplot.

See text-menu (p. 360).

DockVerticalTextFrac and DockHorizontalTextFrac set the fraction of the window reserved for the text
window in permille of the vertical or horizontal layout.

The GraphFont entry specifies the font name and size in points.

See graph-menu (p. 359).

Wxt

The wxt terminal device generates output in a separate window. The window is created by the wxWidgets
library, where the ’wxt’ comes from. The actual drawing is done via cairo, a 2D graphics library, and pango, a
library for laying out and rendering text.

Syntax:
set term wxt {<n>}

{size <width>,<height>} {position <x>,<y>}
{background <rgb_color> | nobackground}

362 gnuplot 6.1

{{no}enhanced}
{font } {fontscale <scale>}
{title "title"}
{linewidth <lw>} {butt|rounded|square}
{dashlength <dl>}
{{no}persist}
{{no}raise}
{{no}ctrl}
{close}

Multiple plot windows are supported: set terminal wxt <n> directs the output to plot window number n.

The default window title is based on the window number. This title can also be specified with the keyword
"title".

Plot windows remain open even when the gnuplot driver is changed to a different device. A plot window can be
closed by pressing the letter ’q’ while that window has input focus, by choosing close from a window manager
menu, or with set term wxt <n> close.

The size of the plot area is given in pixels, it defaults to 640x384. In addition to that, the actual size of the
window also includes the space reserved for the toolbar and the status bar. When you resize a window, the
plot is immediately scaled to fit in the new size of the window. Unlike other interactive terminals, the wxt
terminal scales the whole plot, including fonts and linewidths, and keeps its global aspect ratio constant, leaving
an empty space painted in gray. If you type replot, click the replot icon in the terminal toolbar or type a new
plot command, the new plot will completely fit in the window and the font size and the linewidths will be reset
to their defaults.

The position option can be used to set the position of the plot window. The position option only applies to the
first plot after the set term command.

The active plot window (the one selected by set term wxt <n>) is interactive. Its behaviour is shared with
other terminal types. See mouse (p. 227) for details. It also has some extra icons, which are supposed to be
self-explanatory.

This terminal supports an enhanced text mode, which allows font and other formatting commands (subscripts,
superscripts, etc.) to be embedded in labels and other text strings. The enhanced text mode syntax is shared
with other gnuplot terminal types. See enhanced (p. 39) for more details.

 is in the format "FontFace,FontSize", i.e. the face and the size comma-separated in a single string.
FontFace is a usual font face name, such as ’Arial’. If you do not provide FontFace, the wxt terminal will use
’Sans’. FontSize is the font size, in points. If you do not provide it, the wxt terminal will use a size of 10 points.

For example :
set term wxt font "Arial,12"
set term wxt font "Arial" # to change the font face only
set term wxt font ",12" # to change the font size only
set term wxt font "" # to reset the font name and size

The fonts are retrieved from the usual fonts subsystems. Under Windows, those fonts are to be found and
configured in the entry "Fonts" of the control panel. Under UNIX, they are handled by "fontconfig".

Pango, the library used to layout the text, is based on utf-8. Thus, the wxt terminal has to convert from your
encoding to utf-8. The default input encoding is based on your ’locale’. If you want to use another encoding,
make sure gnuplot knows which one you are using. See encoding (p. 202) for more details.

Pango may give unexpected results with fonts that do not respect the unicode mapping. With the Symbol font,
for example, the wxt terminal will use themap provided by http://www.unicode.org/ to translate character codes

gnuplot 6.1 363

to unicode. Pango will do its best to find a font containing this character, looking for your Symbol font, or other
fonts with a broad unicode coverage, like the DejaVu fonts. Note that "the Symbol font" is to be understood as
theAdobe Symbol font, distributedwithAcrobat Reader as"SY______.PFB". Alternatively, theOpenSymbol
font, distributed with OpenOffice.org as "opens___.ttf", offers the same characters. Microsoft has distributed
a Symbol font ("symbol.ttf"), but it has a different character set with several missing or moved mathematic
characters. If you experience problems with your default setup (if the demo enhancedtext.dem is not displayed
properly for example), you probably have to install one of the Adobe or OpenOffice Symbol fonts, and remove
the Microsoft one. Other non-conform fonts, such as "wingdings" have been observed working.

The rendering of the plot can be altered with a dialog available from the toolbar. To obtain the best output
possible, the rendering involves three mechanisms : antialiasing, oversampling and hinting. Antialiasing allows
to display non-horizontal and non-vertical lines smoother. Oversampling combined with antialiasing provides
subpixel accuracy, so that gnuplot can draw a line from non-integer coordinates. This avoids wobbling effects
on diagonal lines (’plot x’ for example). Hinting avoids the blur on horizontal and vertical lines caused by
oversampling. The terminal will snap these lines to integer coordinates so that a one-pixel-wide line will actually
be drawn on one and only one pixel.

By default, the window is raised to the top of your desktop when a plot is drawn. This can be controlled with
the keyword "raise". The keyword "persist" will prevent gnuplot from exiting before you explicitly close all
the plot windows. Finally, by default the key <space> raises the gnuplot console window, and ’q’ closes the
plot window. The keyword "ctrl" allows you to replace those bindings by <ctrl>+<space> and <ctrl>+’q’,
respectively. These three keywords (raise, persist and ctrl) can also be set and remembered between sessions
through the configuration dialog.

X11

Syntax:
set terminal x11 {<n> | window "<string>"}

{title "<string>"}
{{no}enhanced} {font <fontspec>}
{linewidth LW}
{{no}persist} {{no}raise} {{no}ctrlq}
{{no}replotonresize}
{close}
{size XX,YY} {position XX,YY}

set terminal x11 {reset}

Multiple plot windows are supported: set terminal x11 <n> directs the output to plot window number n. If
n is not 0, the terminal number will be appended to the window title (unless a title has been supplied manually)
and the icon will be labeled Gnuplot <n>. The active window may be distinguished by a change in cursor
(from default to crosshair).

The x11 terminal can connect to X windows previously created by an outside application via the optionwindow
followed by a string containing the X ID for the window in hexadecimal format. Gnuplot uses that external X
window as a container since X does not allow for multiple clients selecting the ButtonPress event. In this way,
gnuplot’s mouse features work within the contained plot window.

set term x11 window "220001e"

The x11 terminal supports enhanced text mode (see enhanced (p. 39)), subject to the available fonts. In order
for font size commands embedded in text to have any effect, the default x11 font must be scalable. Thus the
first example below will work as expected, but the second will not.

364 gnuplot 6.1

set term x11 enhanced font "arial,15"
set title '{/=20 Big} Medium {/=5 Small}'

set term x11 enhanced font "terminal-14"
set title '{/=20 Big} Medium {/=5 Small}'

Plot windows remain open even when the gnuplot driver is changed to a different device. A plot window can be
closed by pressing the letter q while that window has input focus, or by choosing close from a window manager
menu. All plot windows can be closed by specifying reset, which actually terminates the subprocess which
maintains the windows (unless -persist was specified). The close command can be used to close individual
plot windows by number. However, after a reset, those plot windows left due to persist cannot be closed with
the command close. A close without a number closes the current active plot window.

The gnuplot outboard driver, gnuplot_x11, is searched in a default place chosen when the program is compiled.
You can override that by defining the environment variable GNUPLOT_DRIVER_DIR to point to a different
location.

Plot windows will automatically be closed at the end of the session unless the -persist option was given.

The options persist and raise are unset by default, which means that the defaults (persist == no and raise ==
yes) or the command line options -persist / -raise or the Xresources are taken. If [no]persist or [no]raise are
specified, they will override command line options and Xresources. Setting one of these options takes place
immediately, so the behaviour of an already running driver can be modified. If the window does not get raised,
see discussion in raise (p. 179).

The option replotonresize (active by default) replots the data when the plot window is resized. Without this
option, the even-aspect-ratio scaling may result in the plot filling only part of the window after resizing. With
this option, gnuplot does a full replot on each resize event, resulting in better space utilization. This option is
generally desirable, unless the potentially CPU-intensive replotting during resizing is a concern. Replots can
be manually initiated with hotkey ’e’ or the ’replot’ command.

The option title "<title name>" will supply the title name of the window for the current plot window or plot
window <n> if a number is given. Where (or if) this title is shown depends on your X window manager.

The size option can be used to set the size of the plot window. The size option will only apply to newly created
windows.

The position option can be used to set the position of the plot window. The position option will only apply to
newly created windows.

The size or aspect ratio of a plot may be changed by resizing the gnuplot window.

Linewidths and pointsizes may be changed from within gnuplot with set linestyle.

For terminal type x11, gnuplot accepts (when initialized) the standard X Toolkit options and resources such
as geometry, font, and name from the command line arguments or a configuration file. See the X(1) man page
(or its equivalent) for a description of such options.

A number of other gnuplot options are available for the x11 terminal. These may be specified either as
command-line options when gnuplot is invoked or as resources in the configuration file ".Xdefaults". They
are set upon initialization and cannot be altered during a gnuplot session. (except persist and raise)

X11_fonts

Upon initial startup, the default font is taken from the X11 resources as set in the system or user .Xdefaults file
or on the command line.

gnuplot 6.1 365

Example:
gnuplot*font: lucidasans-bold-12

A new default font may be specified to the x11 driver from inside gnuplot using
`set term x11 font "<fontspec>"`

The driver first queries the X-server for a font of the exact name given. If this query fails, then it tries to
interpret <fontspec> as ",<size>,<slant>,<weight>" and to construct a full X11 font name of the
form

-*--<weight>-<s>-*-*-<size>-*-*-*-*-*-<encoding>

 is the base name of the font (e.g. Times or Symbol)
<size> is the point size (defaults to 12 if not specified)
<s> is 'i' if <slant>=="italic" 'o' if <slant>=="oblique" 'r' otherwise
<weight> is 'medium' or 'bold' if explicitly requested, otherwise '*'
<encoding> is set based on the current character set.

So set term x11 font"arial,15,italic"will be translated to -*-arial-*-i-*-*-15-*-*-*-*-*-iso8859-1 (assuming
default encoding). The <size>, <slant>, and <weight> specifications are all optional. If you do not specify
<slant> or<weight> then you will get whatever font variant the font server offers first. You may set a default
encoding via the corresponding X11 resource. E.g.

gnuplot*encoding: iso8859-15

The driver also recognizes some common PostScript font names and replaces them with possible X11 or
TrueType equivalents. This same sequence is used to process font requests from set label.

If your gnuplot was built with configuration option –enable-x11-mbfonts, you can specify multi-byte fonts by
using the prefix "mbfont:" on the font name. An additional font may be given, separated by a semicolon.
Since multi-byte font encodings are interpreted according to the locale setting, you must make sure that the
environmental variable LC_CTYPE is set to some appropriate locale value such as ja_JP.eucJP, ko_KR.EUC,
or zh_CN.EUC.

Example:
set term x11 font 'mbfont:kana14;k14'

'kana14' and 'k14' are Japanese X11 font aliases, and ';'
is the separator of font names.

set term x11 font 'mbfont:fixed,16,r,medium'
,<size>,<slant>,<weight> form is also usable.

set title '(mb strings)' font 'mbfont:*-fixed-medium-r-normal--14-*'

The same syntax applies to the default font in Xresources settings, for example,
gnuplot*font: \

mbfont:-misc-fixed-medium-r-normal--14-*-*-*-c-*-jisx0208.1983-0

If gnuplot is built with –enable-x11-mbfonts, you can use two special PostScript font names ’Ryumin-Light-*’
and ’GothicBBB-Medium-*’ (standard Japanese PS fonts) without the prefix "mbfont:".

Command-line_options

In addition to the X Toolkit options, the following options may be specified on the command line when starting
gnuplot or as resources in your ".Xdefaults" file (note that raise and persist can be overridden later by set
term x11 [no]raise [no]persist):

366 gnuplot 6.1

‘-mono‘ forces monochrome rendering on color displays.
‘-gray‘ requests grayscale rendering on grayscale or color displays.

(Grayscale displays receive monochrome rendering by default.)
‘-clear‘ requests that the window be cleared momentarily before a

new plot is displayed.
‘-tvtwm‘ requests that geometry specifications for position of the

window be made relative to the currently displayed portion
of the virtual root.

‘-raise‘ raises plot window after each plot.
‘-noraise‘ does not raise plot window after each plot.
‘-persist‘ plot windows survive after main gnuplot program exits.

The options are shown above in their command-line syntax. When entered as resources in ".Xdefaults", they
require a different syntax.

Example:
gnuplot*gray: on
gnuplot*ctrlq: on

gnuplot also provides a command line option (-pointsize <v>) and a resource, gnuplot*pointsize: <v>, to
control the size of points plotted with the points plotting style. The value v is a real number (greater than 0 and
less than or equal to ten) used as a scaling factor for point sizes. For example, -pointsize 2 uses points twice
the default size, and -pointsize 0.5 uses points half the normal size.

The -ctrlq switch changes the hot-key that closes a plot window from q to <ctrl>q. This is useful is you are
using the keystroke-capture feature pause mouse keystroke, since it allows the character q to be captured
just as all other alphanumeric characters. The -ctrlq switch similarly replaces the <space> hot-key with
<ctrl><space> for the same reason.

Color_resources

NB: THIS SECTION IS LARGELY IRRELEVANT IN GNUPLOT VERSION 5 The X11 terminal honors
the following resources (shown here with their default values) or the greyscale resources. The values may be
color names as listed in the X11 rgb.txt file on your system, hexadecimal RGB color specifications (see X11
documentation), or a color name followed by a comma and an intensity value from 0 to 1. For example, blue,
0.5 means a half intensity blue.

gnuplot*background: white
gnuplot*textColor: black
gnuplot*borderColor: black
gnuplot*axisColor: black
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral

gnuplot 6.1 367

The command-line syntax for these is simple only for background, which maps directly to the usual X11 toolkit
option "-bg". All others can only be set on the command line by use of the generic "-xrm" resource override
option

Examples:
gnuplot -background coral

to change the background color.
gnuplot -xrm 'gnuplot*line1Color:blue'

to override the first linetype color.

Grayscale_resources

When -gray is selected, gnuplot honors the following resources for grayscale or color displays (shown here
with their default values). Note that the default background is black.

gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100
gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30

Line_resources

NB: THIS SECTION IS LARGELY IRRELEVANT IN GNUPLOT VERSION 5 gnuplot honors the follow-
ing resources for setting the width (in pixels) of plot lines (shown here with their default values.) 0 or 1 means
a minimal width line of 1 pixel width. A value of 2 or 3 may improve the appearance of some plots.

gnuplot*borderWidth: 1
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0

368 gnuplot 6.1

gnuplot honors the following resources for setting the dash style used for plotting lines. 0 means a solid line.
A two-digit number jk (j and k are>= 1 and<= 9) means a dashed line with a repeated pattern of j pixels on
followed by k pixels off. For example, ’16’ is a dotted line with one pixel on followed by six pixels off. More
elaborate on/off patterns can be specified with a four-digit value. For example, ’4441’ is four on, four off, four
on, one off. The default values shown below are for monochrome displays or monochrome rendering on color
or grayscale displays. Color displays default to dashed:off

gnuplot*dashed: off
gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13

X11 pm3d_resources

NB: THIS SECTION IS LARGELY IRRELEVANT IN GNUPLOT VERSION 5

By default gnuplot uses the default visual of the screen. The number of colors which can be allocated depends
on the visual class chosen. On a visual class with a depth > 12bit, gnuplot starts with a maximal number of
0x200 colors. On a visual class with a depth > 8bit (but <= 12 bit) the maximal number of colors is 0x100,
on <= 8bit displays the maximum number of colors is 240 (16 are left for line colors).

Gnuplot first starts to allocate the maximal number of colors as stated above. If this fails, the number of colors is
reduced by the factor 2 until gnuplot gets all colors which are requested. If dividingmaxcolors by 2 repeatedly
results in a number which is smaller thanmincolors gnuplot tries to install a private colormap. In this case the
window manager is responsible for swapping colormaps when the pointer is moved in and out the x11 driver’s
window.

The default for mincolors is maxcolors / (num_colormaps > 1 ? 2 : 8), where num_colormaps is the number
of colormaps which are currently used by gnuplot (usually 1, if only one x11 window is open).

X11 other_resources

By default the contents of the current plot window are exported to the X11 clipboard in response to X events
in the window. Setting the resource ’gnuplot*exportselection’ to ’off’ or ’false’ will disable this.

By default text rotation is done using a method that is fast, but can corrupt nearby colors depending on the
background. If this is a problem, you can set the resource ’gnuplot.fastrotate’ to ’off’

gnuplot*exportselection: off
gnuplot*fastrotate: on
gnuplot*ctrlq: off

Xlib

The xlib terminal driver supports the X11 Windows System. It generates gnuplot_x11 commands, but sends
them to the output file specified by set output ’<filename>’. set term x11 is equivalent to set output
"|gnuplot_x11 -noevents"; set term xlib. xlib takes the same set of options as x11.

Part V

Index

Index

’ ’, 166
’+’, 166
’++’, 166
++, 173
.gnuplot, 82
1D, 273
2D, 274, 276
3D, 126

abs, 44
acos, 44
acosh, 44
acsplines, 163
adobeglyphnames, 346
Ai, 48, 51
aifm, 307
airy, 44
all, 179
alpha channel, 47, 111, 189
Amos, 51
angles, 43, 119, 183, 254
animate, 128, 329
animation, 128
annotation, 71, 114
aqua, 307
arg, 43, 44
ARGV, 130, 142
argv, 130
arrays, 30, 33, 59, 161, 169
arrow, 183, 260
arrows, 33, 90, 123
arrowstyle, 123, 184, 259
asin, 44

asinh, 44
atan, 44
atan2, 44
atanh, 44
automated, 107
autoscale, 185
autotitle, 39, 197, 215
avs, 152
axes, 38, 80, 149
azimuth, 227, 275

back, 68
background, 66, 68
backquotes, 83, 303
bars, 91, 94, 202
batch/interactive, 26, 36, 132, 146, 182
BE, 308
be, 308
beeswarm, 91, 213
behind, 68
besi0, 44
besi1, 44
besin, 44
besj0, 44
besj1, 44
besjn, 44
BesselH1, 28, 49
BesselH2, 49
BesselI, 48, 51
BesselJ, 48, 51
BesselK, 28, 48, 51
BesselY, 48, 51
besy0, 44

369

370 gnuplot 6.1 INDEX

besy1, 44
besyn, 44
bezier, 163
bgnd, 66, 68
Bi, 48, 51
binary, 149, 152
bind, 78, 148, 181, 186, 228
bins, 33, 158, 164
bitwise operators, 56
black, 66, 68
blank, 35, 118
block, 62, 311
blocks, 27, 59, 63, 130, 132, 146, 181
bmargin, 186
bold, 39
border, 101, 186, 209, 262, 270, 283
boxdepth, 93, 189
boxed, 266
boxerrorbars, 91, 188
boxes, 33, 91, 95, 108, 188
boxplot, 93, 94, 96, 261
boxwidth, 91, 94, 96, 188
boxxyerror, 95
branch, 139
break, 129, 131, 132, 306
broken axis, 234
bugs, 26

caca, 312, 313
cairolatex, 313, 333
call, 36, 129, 146
candlesticks, 94, 95, 101, 261
canvas, 37, 329, 332, 341
canvas terminal, 315
cardinality, 55, 56, 59
cbdata, 289
cbdtics, 289
cblabel, 290
cbmtics, 290
cbrange, 65, 66, 189, 248, 250, 264, 291
cbrt, 44
cbtics, 291
cd, 129
cdawson, 45, 51
ceil, 48
center, 110, 153
cerf, 45, 51
cgm, 316

changes, 35
chi shapes, 189
circle, 96, 236
circles, 33, 96
clabel, 190
clear, 131
clip, 123, 190
clip1in, 251
clip4in, 251
clipcb, 251
clipping, 126
close, 80
CMY, 245
cnormal, 165
cntrlabel, 81, 89, 191, 193, 195, 214
cntrparam, 81, 191, 195, 257, 299
color assignment, 248
colorbox, 66, 194, 240, 248, 250, 291
colormap, 29, 67, 189, 244
colornames, 65, 194, 264, 291, 328
colors, 33, 64, 65, 104, 190, 241, 242, 264
colorsequence, 189, 190
colorspec, 65, 99, 107, 111, 118, 177, 219, 235,

241, 253, 264, 265, 273
column, 53, 167
columnhead, 53, 156
columnheader, 39, 156, 167, 175, 197, 215, 302
columnheaders, 156, 197
command line editing, 37
command line options, 36
command-line-editing, 180
command-line-options, 26
commands, 129
comments, 26, 38
commentschars, 38, 198
complex, 35, 42, 206, 211
concavehull, 29, 159, 160, 189
conj, 44
console, 333, 351
constants, 43
context, 319, 333
continue, 129, 131, 132, 306
contour, 81, 126, 193, 195, 210, 267, 299
contourfill, 29, 97, 195
contours, 195
conversion, 47, 48
convexhull, 29, 158

INDEX gnuplot 6.1 371

coordinates, 38, 184, 213, 217, 219, 220,
235–238, 247, 259, 270, 273, 279, 283

copyright, 25
cornerpoles, 196
corners2color, 252
cos, 44
cosh, 44
counting words, 54
csplines, 29, 164
csv, 268
cubehelix, 243
cumulative, 165
cycle, 222

dashtype, 65, 67, 196
data, 75, 149, 154, 225, 237, 255, 267
data file, 154
datablocks, 63, 154, 166
datafile, 81, 133, 149, 154, 156, 185, 196, 210,

298
datastrings, 39, 175
date specifiers, 207
Dawson’s integral, 45
debug, 321
decimalsign, 199, 202, 205, 223
defined, 43
degrees, 183
delaunay, 35, 160
demos, 36
depthorder, 126, 251
development, 32, 35
dgrid3d, 103, 122, 200, 255, 257, 267, 298, 299
division, 42
do, 63, 131, 145, 306
domterm, 321
dots, 98
dpu414, 327
dumb, 311, 322
dummy, 201
dx, 110, 153
dxf, 323
dy, 110, 153

edf, 152
editing, 37
editing postscript, 344
eepic, 33, 333
ehf, 152

ellipse, 99, 120, 235, 236, 265
ellipses, 99, 114, 265
elliptic, 48
elliptic integrals, 48
EllipticE, 44
EllipticK, 44
EllipticPi, 44
emf, 323
emtex, 33, 333
encoding, 40, 41, 61, 83, 202, 223, 226, 338, 342,

362
encodings, 202
enhanced, 39, 307, 332, 333, 338, 342, 343, 350,

352, 362, 363
environment, 41
epidemiological week, 52, 53
epoch, 52
eps, 62
epscairo, 324
epslatex, 324, 333
epson 180dpi, 327
epson 60dpi, 327
epson lx800, 327
equal, 258
equal axes, 275
erf, 44
erfc, 44
erfi, 45, 51
error estimates, 136
error recovery, 31
error state, 58, 181
errorbars, 94, 96, 101, 125, 202
errorlines, 125
errors, 58
errorscaling, 138
evaluate, 132
every, 156, 300
example, 157
examples, 36
exists, 47, 84
exit, 132, 179
exp, 44
expint, 28, 49, 51
exponentiation, 56
expressions, 42, 178, 292

factorial, 55
faddeeva, 45, 51

372 gnuplot 6.1 INDEX

FAQ, 26
faq, 26
fc, 262
fenceplots, 101, 127, 128
fig, 327
file, 154
filetype, 111, 152
fill, 92, 95, 96, 101, 105, 128
fillcolor, 65, 126, 248, 252, 262
filledcurves, 29, 99
fillsteps, 101
fillstyle, 94, 96, 99, 176, 235, 261, 265, 333, 341,

351
filter, 168, 299
filters, 29, 158, 162
financebars, 96, 101, 261
fit, 42, 58, 133, 135, 136, 139, 168, 204
FIT LOG, 139
fit parameters, 135
FIT SCRIPT, 139
fitting, 135
fix, 185
flipx, 110, 153
flipy, 153
flipz, 153
floating point exceptions, 197
floor, 47
flush, 251
fnormal, 165
fontconfig, 61
fontfile, 62, 344–346
fontpath, 204
fonts, 42, 61, 62, 332, 341, 351, 364
for, 63, 105, 107, 145, 182, 304
format, 204, 267, 272, 279, 280, 284
fortran, 197
fpe trap, 197
frequency, 158, 165
FresnelC, 28, 49
FresnelS, 49
front, 68
fsteps, 102
ftriangles, 251
function, 171
functionblocks, 142, 197
functions, 59, 149, 171

gamma, 49

gamma correction, 244
gd, 61, 329
general, 150, 199, 244, 297
geographic, 205, 286
geomean, 252
gif, 61, 328
global, 81
glossary, 62
gnuplot, 25
gnuplot defined, 58
gnuplotrc, 82
gpic, 330
gprintf, 46, 83, 219, 226
GPVAL, 58
gpval, 58
graph menu, 359
graph-menu, 358, 361
grass, 330
gray, 227
grayscale resources, 367
grid, 29, 104, 110, 120, 122, 209, 256, 273
grid data, 195, 200, 267, 295, 298
GridDistance, 305

Hankel, 49, 51
harmean, 252
heatmap, 29
heatmaps, 103, 111, 120
help, 144
help desk, 26
hexadecimal, 43
hidden3d, 126, 209, 212
histeps, 102, 108
histogram, 165
histograms, 104, 263
history, 144, 180
hotkey, 78
hotkeys, 26, 78
hpgl, 331
hsteps, 29, 35, 108
HSV, 245
hsv, 47, 65
hsv2rgb, 47
hypertext, 112, 221

ibeta, 28, 50
if, 33, 63, 131, 144
igamma, 28, 49, 53

INDEX gnuplot 6.1 373

imag, 44
image, 103, 110, 119
imagen, 331
imaginary i, 35, 207, 211
import, 81, 145
impulses, 111
index, 61, 94, 155, 161, 300
Inf, 58, 59
initialization, 36, 82, 181
inline, 63
inset, 80, 131, 230
int, 47
integer, 33, 47
interval, 263
introduction, 25
inverf, 44
invibeta, 28, 50
invigamma, 28, 50
invnorm, 45
isosamples, 81, 171, 210, 212, 257, 274, 276,

298, 299
isosurface, 33, 127
isotropic, 120, 212, 258, 275
italic, 39
iterate, 63, 180
iteration, 63, 131, 145, 174, 182, 304
iteration specifier, 64

jitter, 33, 91, 213, 299
join, 30, 55
jpeg, 61, 331

kdensity, 29, 158, 165, 200
keepfix, 185
key, 120, 175, 213
keyentry, 33, 107, 120, 214, 215
keys, 217
kittycairo, 31, 128, 332
kittygd, 333

label, 112, 218, 266
labels, 39, 112, 156, 220, 227, 266
LambertW, 28, 50
lambertw, 45
latex, 33, 39, 333
layers, 68, 234
layout, 32, 213, 229
lc, 65
least squares, 133

legend, 213, 218
lgamma, 45
libcerf, 51
libopenspecfun, 51
license, 25
lighting, 33, 250, 253
limit, 136
line, 194, 209, 260, 290
line editing, 37
linecolor, 65, 91, 95, 101, 122
lines, 113
linespoints, 68, 113, 263
linestyle, 113, 263
linetype, 64, 189, 190, 263
linetypes, 64, 113, 117, 177
linewidth, 113, 263
link, 172, 185, 222, 278, 281, 288
linux console, 333
list, 283
lmargin, 222
lnGamma, 28, 49, 50
load, 146
loadpath, 222
local, 27, 81, 142, 146
locale, 61, 199, 202, 223
log, 45, 188
log10, 45
logit, 234
logscale, 223, 286
lower, 179
lp, 113
lua, 333, 334

macros, 59, 84, 132
map, 126, 253, 294
mapping, 80, 224, 254
margin, 186, 222, 230, 256, 273
margins, 224
mark, 70, 71
marks, 35, 70, 114
markup, 39
Marquardt, 133
mask, 29, 160, 176
masking, 103, 115, 159, 160
matrix, 150, 157, 199, 295, 301
max, 252
maxiter, 136
mcsplines, 164

374 gnuplot 6.1 INDEX

mean, 252
median, 252
micro, 226
min, 252
minussign, 226
missing, 54, 161, 169, 197
mixing macros backquotes, 84
model, 241
modulo, 56
modulus, 44
monochrome, 65, 189, 226
mouse, 78, 79, 227, 350, 362
mouseformat, 228
mousewheel, 229
mousing, 26, 227
mttics, 229
multi branch, 139
multi-branch, 134
multiplot, 80, 131, 229, 354
multiplots, 180, 231
mx2tics, 231
mxtics, 229, 231, 233, 257
my2tics, 233
mytics, 233
mztics, 233

NaN, 42, 58, 59, 168
nec cp6, 327
negation, 55
new, 27
newhistogram, 105, 106
newspiderplot, 121
noarrow, 183
noautoscale, 185
noborder, 186
nocbdtics, 289
nocbmtics, 290
nocbtics, 291
noclipcb, 251
nocontour, 195
nodgrid3d, 200
nodraw, 68
noextend, 185, 237, 280, 282
nofpe trap, 197
nogrid, 200
nohidden3d, 209
nokey, 213
nolabel, 218

nologscale, 223
nomouse, 227
nomttics, 229
nomultiplot, 229
nomx2tics, 231
nomxtics, 231
nomy2tics, 233
nomytics, 233
nomztics, 233
nonlinear, 33, 233
nonuniform, 295, 296
nooffsets, 237
noparametric, 246
nopolar, 254
norm, 44, 45
nosurface, 267
notimestamp, 271
nox2dtics, 277
nox2mtics, 277
nox2tics, 278
nox2zeroaxis, 278
noxdtics, 279
noxmtics, 280
noxtics, 282
noxzeroaxis, 287
noy2dtics, 287
noy2mtics, 287
noy2tics, 288
noy2zeroaxis, 288
noydtics, 288
noymtics, 288
noytics, 288
noyzeroaxis, 289
nozdtics, 289
nozmtics, 290
noztics, 290
nozzeroaxis, 289
numeric, 205, 226

objects, 234
octal, 43
offset, 33
offsets, 185, 224, 237
okidata, 327
one’s complement, 55
operator precedence, 55
operators, 55
origin, 131, 230, 238

INDEX gnuplot 6.1 375

output, 238
overflow, 47, 239

palette, 30, 47, 65, 126, 177, 189, 194, 219, 240,
244, 248, 250, 252, 264, 273, 291, 292

parallel, 116
parallelaxes, 116, 246, 265
parallelaxis, 246
parametric, 185, 225, 246, 273, 274, 276
path, 29, 159, 164
pause, 147
paxis, 116, 246, 265, 266
pbm, 336
pcl5, 331, 337
pdf, 61
pdfcairo, 313, 332, 338
perpendicular, 154
persist, 80
pi, 58, 59
pict2e, 333, 339
piechart, 97
piped data, 167
piped-data, 154
pipes, 167
pixels, 111, 357
pixmap, 247
placement, 213
plot, 148, 149, 180, 293, 294, 300
plot styles, 90
plotting, 80
plugins, 81, 142, 145
pm, 340
pm3d, 93, 97, 194, 248, 264
png, 61, 333, 340
pngcairo, 341, 357
pointinterval, 113, 263
pointintervalbox, 253
pointnumber, 113, 263
points, 113, 117
pointsize, 177, 213, 253
pointtype, 117
polar, 80, 116, 117, 254, 256, 257, 273
polygon, 237
polygons, 33, 118
pop, 268
position, 248
postscript, 62, 342, 344
practical guidelines, 137

precision, 47
print, 178
printerr, 178, 179
printing, 358, 359
product, 35, 57
projection, 275
prologue, 42, 324, 343, 346, 347
psdir, 256, 346
pseudo mousing, 148
pseudo-mousing, 31, 332, 333
pseudocolumns, 94, 162, 168, 169
pseudofiles, 166
pslatex, 313, 325, 333, 347
pstex, 347
pstricks, 333, 348
punctuation, 85
push, 268
pwd, 179

qt, 349
quit, 179
quotes, 26, 41, 43, 85

raise, 147, 179, 364
rand, 45, 50
random, 50
range frame, 286
rangelimited, 286
ranges, 133, 171
ratio, 257
raxis, 256
real, 45
record, 62
rectangle, 235, 261
refresh, 166, 170, 179
regis, 351
remultiplot, 180, 231
replot, 166, 180
reread, 180
reset, 181, 182
restore, 280
return, 27, 181
RGB, 245
rgbalpha, 110
rgbcolor, 47, 66, 67
rgbformulae, 241
rgbimage, 110, 256
rgbmax, 256

376 gnuplot 6.1 INDEX

Riemann, 55
rlabel, 256
rmargin, 256
rms, 252
rotate, 110, 154
round, 48
rrange, 117, 186, 254, 256
rtics, 256, 257, 273

sample, 172
samples, 163, 171, 210, 212, 257, 267, 273
sampling, 166, 171, 172, 257, 294
save, 181
sbezier, 164
scan, 153
scansautomatic, 251
scansbackward, 251
scansforward, 251
scope, 27, 64, 81, 142, 146
screen, 62
screendump, 359
scrolling, 229
sectors, 103, 119
seeking assistance, 26
separator, 156, 168, 198
sequences, 35, 40, 61, 117
series, 283
session, 181
set, 182
sgn, 45
sharpen, 160
shell, 291
show, 182
sin, 45
sinh, 45
sixel, 61, 333
sixelgd, 128, 334, 351
size, 131, 230, 246, 257, 329, 332, 341
SJIS, 202
sjis, 202
skip, 156, 157, 162
slice, 30, 60
smooth, 162, 257
space, 78
sparse, 30, 103, 110, 295, 296
special filenames, 77, 166
special functions, 28, 51
special linetypes, 33, 68

special-filenames, 63, 154, 273, 294
specify, 85
spiderplot, 33, 120, 170, 266
splines, 162
split, 30, 54, 60, 83
splot, 180, 209, 276, 293
spotlight, 32, 250
sprintf, 46, 83, 219
sqrt, 45
square, 117, 257, 258
starc, 327
start, 82
start up, 82
starting values, 140
startup, 41, 82
statistical overview, 137
statistics, 299
stats, 299
steps, 102, 122
strcol, 53
strftime, 46, 83, 207
string, 82
string operators, 56
stringcolumn, 53
strings, 82, 219
strlen, 46
strptime, 46, 83, 207, 286
strstrt, 46, 83
style, 168, 176, 219
styles, 149, 176, 258, 261, 262
subfigures, 80
substitution, 83, 86, 223
substr, 46, 83
substring, 46
substrings, 82
summation, 57, 63, 239
surface, 104, 126, 195, 267, 299
svg, 322, 352
svga, 352
symbols, 117
SynchrotronF, 28, 51
syntax, 26, 85, 205, 273, 280
system, 46, 291, 302

table, 176, 267, 268
tan, 45
tandy 60dpi, 327
tanh, 45

INDEX gnuplot 6.1 377

tc, 65
tek40, 353
tek410x, 353
term, 182, 307
terminal, 62, 307
terminals, 269
termoption, 268, 269
ternary, 57
test, 30, 65, 177, 300, 303
texdraw, 333, 353
text, 219, 312, 340, 352, 358
text markup, 39
text menu, 360
text-menu, 361
textbox, 88, 219, 266
textcolor, 65
tgif, 354
theta, 117, 119, 254, 269
tics, 270
ticscale, 271
ticslevel, 271
tikz, 355
time, 32, 51, 87, 205, 207, 232, 271, 285
time specifiers, 34, 51, 87, 205, 207, 272, 279,

286
time/date, 86, 272, 279
timecolumn, 51, 53, 271, 278
timefmt, 39, 51, 172, 220, 271, 278
timestamp, 271
tips, 140
title, 39, 272
tkcanvas, 355
tm hour, 47
tm mday, 47
tm min, 47
tm mon, 47
tm sec, 47
tm wday, 47
tm week, 52, 53, 208
tm yday, 47
tm year, 47
tmargin, 273
toggle, 303
tpic, 33, 333
trange, 273
transparency, 111, 189
transparent, 262
transpose, 153

trim, 46, 55, 83
ttics, 117, 273

uigamma, 28, 49, 53
unary, 55
undefine, 303
unicode, 41, 61
uniform, 295
unique, 163, 164
unset, 304
unwrap, 164
update, 305
urange, 274
user defined, 58
user-defined, 171
using, 39, 42, 51, 53, 54, 57, 90, 155, 167, 249,

300
UTF 8, 202, 346
utf8, 41, 83, 202

valid, 54
value, 54, 59
variable, 91, 92, 95, 101, 108, 112–114, 117, 118,

122, 162, 252
variables, 54, 58, 59, 78, 80, 118, 147
vclear, 305
vectors, 90, 122, 123, 173
version, 27
version 5, 33
vfill, 127, 299, 305
vgagl (linux console), 333
vgfill, 305
vgrid, 127, 274, 294, 299
view, 126, 274, 287, 294
viridis, 243
voigt, 45
volatile, 170
voxel, 47
voxel grids, 299
voxel-grids, 274, 294
VoxelDistance, 305
VP, 28, 45, 51
VP fwhm, 28, 45, 51
vrange, 276
vttek, 353
vxrange, 276, 294
vyrange, 276
vzrange, 276

378 gnuplot 6.1 INDEX

walls, 276
warn, 306
watch, 87
watchpoints, 32, 87, 88
waterfallplots, 101, 128
webp, 128, 357
weekdate cdc, 52, 53
weekdate iso, 52, 53
wgnuplot.ini, 361
wgnuplot.mnu, 360
while, 63, 132, 306
windbarbs, 71
windows, 357
windrose, 119
with, 176, 254, 258
word, 46, 54, 83
words, 46, 54, 83
wxt, 61, 361

X resources, 364, 366–368
X11, 363
x11, 363
x11 fonts, 364
x2data, 277
x2dtics, 277
x2label, 277
x2mtics, 277
x2range, 278
x2tics, 278
x2zeroaxis, 278
xdata, 39, 205, 220, 272, 277, 278, 287–289
xdtics, 277, 279, 287–289
xerrorbars, 123
xerrorlines, 124
xfig, 327
xlabel, 256, 277, 279, 287, 288, 290
xlib, 369
xmtics, 277, 280, 287, 288, 290
xrange, 185, 246, 254, 278, 280, 288, 290, 291,

300

xterm, 353
xticlabels, 39, 170
xtics, 32, 187, 205, 209, 223, 232, 246, 257, 271,

273, 278, 282, 288, 290, 291
xyerrorbars, 123
xyerrorlines, 124
xyplane, 38, 271, 275, 287, 289, 294
xzeroaxis, 287

y2data, 287
y2dtics, 287
y2label, 287
y2mtics, 287
y2range, 288
y2tics, 288
y2zeroaxis, 288
yaft, 333
ydata, 288
ydtics, 288
yerrorbars, 125
yerrorlines, 125
ylabel, 288
ymtics, 288
yrange, 288
ytics, 288
yzeroaxis, 289

zclip, 97, 248
zdata, 289
zdtics, 289
zero, 289
zeroaxis, 278, 287–289
zerrorfill, 33, 100, 127
zeta, 28, 55
zlabel, 290
zmtics, 290
zoom, 229
zrange, 290
zsort, 33, 161
ztics, 290
zzeroaxis, 289

	I Gnuplot
	Copyright
	Introduction
	Seeking-assistance / Bugs
	New features in version 6
	Function blocks and scoped variables
	Special and complex-valued functions
	New plot styles
	Hulls, masks, and smoothing
	Named palettes
	New data formats
	New built-in functions and array operations
	Program control flow
	Multiplots
	New terminals and terminal options
	Watchpoints
	Week-date time support
	Other new features
	Brief summary of features introduced in version 5
	Features introduced in 5.4
	Features introduced in 5.2
	Features introduced in 5.0

	Differences between versions 5 and 6
	Deprecated syntax

	Development branch (version 6.1)
	Demos and Online Examples
	Batch/Interactive Operation
	Command line options
	Examples

	Canvas size
	Command-line-editing
	Comments
	Coordinates
	Datastrings
	Enhanced text mode
	Escape sequences

	Environment
	Expressions
	Complex values
	Constants
	Functions
	Integer conversion functions (int floor ceil round)
	Elliptic integrals
	Complex Airy functions
	Complex Bessel functions
	Expint
	Fresnel integrals FresnelC(x) and FresnelS(x)
	Gamma
	Igamma
	Invigamma
	Ibeta
	Invibeta
	LambertW
	LnGamma
	Random number generator
	Special functions with complex arguments
	Synchrotron function
	Time functions
	Time
	Timecolumn
	Tm_structure
	Tm_week
	Weekdate_iso
	Weekdate_cdc

	Uigamma
	Using specifier functions
	Column
	Columnhead
	Stringcolumn
	Valid

	Value
	Counting and extracting words
	Zeta

	Operators
	Unary
	Binary
	Ternary

	Summation and cumulative product
	Gnuplot-defined variables
	User-defined variables and functions
	Arrays
	Array functions
	Array indexing

	Fonts
	Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)
	Gd (png, gif, jpeg, sixel terminals)
	Postscript (also encapsulated postscript *.eps)

	Glossary
	Inline data and datablocks
	Iteration
	Linetypes, colors, and styles
	Colorspec
	Background color
	Linecolor variable
	Palette
	Rgbcolor variable

	Dashtype
	Linestyles vs linetypes
	Special linetypes

	Layers
	Marks
	Mark data
	Marks examples
	Example: custom point shapes
	Example: scatterplots
	Example: annotation
	Example: windbarbs
	Example: parametric marks

	Mouse input
	Bind
	Bind space

	Mouse variables

	Persist
	Plotting
	Plugins
	Scope of variables
	Start-up (initialization)
	String constants, string variables, and string functions
	Substrings
	String operators
	String functions
	String encoding

	Substitution and Command line macros
	Substitution of system commands in backquotes
	Substitution of string variables as macros
	String variables, macros, and command line substitution

	Syntax
	Quote marks

	Time/Date data
	Watchpoints
	Watch labels
	Watchpoint function target
	Watch mouse

	II Plotting styles
	Arrows
	Arrowstyle variable

	Bee swarm plots
	Boxerrorbars
	Boxes
	2D boxes
	3D boxes

	Boxplot
	Boxxyerror
	Candlesticks
	Circles
	Contourfill
	Dots
	Ellipses
	Filledcurves
	Above/below
	3D waterfall plots
	Fill properties

	Financebars
	Fillsteps
	Fsteps
	Histeps
	Heatmaps
	Histograms
	Newhistogram
	Automated iteration over multiple columns
	Histogram color assignments

	Hsteps
	Offset
	Missing data

	Image
	Transparency
	Image pixels

	Impulses
	Labels
	Lines
	Linespoints
	Marks
	Linesmarks
	Masking
	Parallelaxes
	Polar plots
	Points
	Pointtype symbols
	Variable point properties

	Polygons
	Rgbalpha
	Rgbimage
	Sectors
	Spiderplot
	Newspiderplot

	Steps
	Surface
	Vectors
	Xerrorbars
	Xyerrorbars
	Xerrorlines
	Xyerrorlines
	Yerrorbars
	Yerrorlines
	3D plots
	Surface plots
	2D projection (set view map)
	PM3D plots

	Fence plots
	Isosurface
	Zerrorfill
	Animation

	III Commands
	Break
	Cd
	Call
	ARGV[]
	Example

	Clear
	Continue
	Do
	Evaluate
	Exit
	Fit
	Adjustable parameters
	Short introduction
	Error estimates
	Statistical overview
	Practical guidelines

	Control
	Error recovery
	Multi-branch
	Starting values
	Time data
	Tips

	Function blocks
	Help
	History
	If
	For
	Import
	Load
	Local
	Lower
	Pause
	Pause mouse close
	Pseudo-mousing during pause

	Plot
	Axes
	Binary
	General
	Array
	Record
	Skip
	Format
	Blank
	Endian
	Filetype
	Avs
	Edf
	Png

	Keywords
	Scan
	Transpose
	Dx, dy, dz
	Flipx, flipy, flipz
	Origin
	Center
	Rotate
	Perpendicular

	Data
	Columnheaders
	Csv files
	Every
	Example datafile
	Filters
	Bins
	Convexhull
	Concavehull
	Delaunay
	Mask
	Sharpen
	If
	Zsort

	Index
	Skip
	Smooth
	Acsplines
	Bezier
	Bins
	Csplines
	Mcsplines
	Path
	Sbezier
	Unique
	Unwrap
	Frequency
	Fnormal
	Cumulative
	Cnormal
	Kdensity

	Special-filenames
	Piped-data
	Using
	Format
	Using_examples
	Pseudocolumns
	Arrays
	Key
	Xticlabels
	X2ticlabels
	Yticlabels
	Y2ticlabels
	Zticlabels

	Volatile

	Functions
	Parametric
	Ranges
	Sampling
	1D sampling (x or t axis)
	2D sampling (u and v axes)

	For loops in plot command
	Title
	With

	Print
	Printerr
	Pwd
	Quit
	Raise
	Refresh
	Remultiplot
	Replot
	Reread
	Reset
	Return
	Save
	Set-show
	Angles
	Arrow
	Autoscale
	Noextend
	Examples
	Polar mode

	Bind
	Bmargin
	Border
	Boxwidth
	Boxdepth
	Chi_shapes
	Color
	Colormap
	Colorsequence
	Clabel
	Clip
	Cntrlabel
	Cntrparam
	Examples

	Color box
	Colornames
	Contour
	Cornerpoles
	Contourfill
	Dashtype
	Datafile
	Set datafile columnheaders
	Set datafile fortran
	Set datafile nofpe_trap
	Set datafile missing
	Set datafile separator
	Set datafile commentschars
	Set datafile binary

	Decimalsign
	Dgrid3d
	Dummy
	Encoding
	Errorbars
	Fit
	Fontpath
	Format
	Numeric format specifiers
	Complex format specifiers

	Time/date specifiers
	Examples

	Grid
	Hidden3d
	History
	Imaginary_i
	Isosamples
	Isosurface
	Isotropic
	Jitter
	Key
	3D key
	Key examples
	Extra key entries
	Key autotitle
	Key layout
	Key placement
	Key offset
	Key samples
	Multiple keys

	Label
	Examples
	Hypertext

	Linetype
	Link
	Lmargin
	Loadpath
	Locale
	Logscale
	Macros
	Mapping
	Margin
	Mark
	Micro
	Minussign
	Monochrome
	Mouse
	Doubleclick
	Format
	Mouseformat
	Scrolling
	Zoom

	Mttics
	Multiplot
	Mx2tics
	Mxtics
	Mxtics time

	My2tics
	Mytics
	Mztics
	Nonlinear
	Object
	Rectangle
	Ellipse
	Circle
	Mark
	Polygon
	Depthorder

	Offsets
	Origin
	Output
	Overflow
	Float
	NaN
	Undefined
	Affected operations

	Palette
	Rgbformulae
	Defined
	Functions
	Gray
	Cubehelix
	Viridis
	Colormap
	File
	Gamma correction
	Maxcolors
	Color model
	Postscript

	Parametric
	Paxis
	Pixmap
	Pixmap from colormap

	Pm3d
	With pm3d (pm3d explicit)
	Pm3d implicit
	Algorithm
	Lighting
	Position
	Scanorder
	Clipping
	Color_assignment
	Corners2color
	Border
	Fillcolor
	Interpolate
	Deprecated_options

	Pointintervalbox
	Pointsize
	Polar
	Polar grid

	Print
	Psdir
	Raxis
	Rgbmax
	Rlabel
	Rmargin
	Rrange
	Rtics
	Samples
	Size
	Spiderplot
	Style
	Set style arrow
	Boxplot
	Set style data
	Set style fill
	Set style fill border
	Set style fill transparent

	Set style function
	Set style histogram
	Set style increment
	Set style line
	Set style circle
	Set style rectangle
	Set style ellipse
	Set style parallelaxis
	Set style spiderplot
	Set style textbox
	Set style watchpoint

	Surface
	Table
	Plot with table

	Terminal
	Termoption
	Theta
	Tics
	Ticslevel
	Ticscale
	Timestamp
	Timefmt
	Title
	Tmargin
	Trange
	Ttics
	Urange
	Version
	Vgrid
	View
	Azimuth
	Equal_axes
	Projection

	Vrange
	Vxrange
	Vyrange
	Vzrange
	Walls
	Watchpoints
	X2data
	X2dtics
	X2label
	X2mtics
	X2range
	X2tics
	X2zeroaxis
	Xdata
	Time

	Xdtics
	Xlabel
	Xmtics
	Xrange
	Examples
	Extend
	Writeback

	Xtics
	Xtics series
	Xtics list
	Xtics time
	Geographic
	Xtics logscale
	Xtics rangelimited

	Xyplane
	Xzeroaxis
	Y2data
	Y2dtics
	Y2label
	Y2mtics
	Y2range
	Y2tics
	Y2zeroaxis
	Ydata
	Ydtics
	Ylabel
	Ymtics
	Yrange
	Ytics
	Yzeroaxis
	Zdata
	Zdtics
	Zzeroaxis
	Cbdata
	Cbdtics
	Zero
	Zeroaxis
	Zlabel
	Zmtics
	Zrange
	Ztics
	Cblabel
	Cbmtics
	Cbrange
	Cbtics

	Shell
	Show
	Show colornames
	Show functions
	Show marks
	Show palette
	Show palette gradient
	Show palette palette
	Show palette rgbformulae

	Show plot
	Show variables

	Splot
	Data-file
	Matrix
	Uniform matrix
	Nonuniform matrix
	Sparse matrix
	Every
	Examples

	Example datafile

	Grid data
	Splot surfaces
	Voxel-grid

	Stats (Statistical Summary)
	Name
	Test for existence of a file
	Voxelgrid

	System
	Test
	Toggle
	Undefine
	Unset
	Linetype
	Monochrome
	Output
	Terminal
	Warnings

	Update
	Vclear
	Vfill
	Warn
	While

	IV Terminal types
	Complete list of terminals
	Aifm
	Aqua
	Be
	Command-line_options
	Monochrome_options
	Color_resources
	Grayscale_resources
	Line_resources

	Block
	Caca
	Caca limitations and bugs

	Cairolatex
	Canvas
	Cgm
	Cgm font
	Cgm fontsize
	Cgm linewidth
	Cgm rotate
	Cgm solid
	Cgm size
	Cgm width
	Cgm nofontlist

	Context
	Requirements
	Calling gnuplot from ConTeXt

	Debug
	Domterm
	Animate

	Dumb
	Dxf
	Emf
	Epscairo
	Epslatex
	Epson_180dpi
	Fig
	Gif
	Animate
	Optimize

	Fonts

	Gpic
	Grass
	HP terminals
	Hpgl
	Imagen
	Jpeg
	Kittycairo
	Kittygd
	Latex
	Linux console
	Lua
	Lua tikz

	Pbm
	Pcl5
	Pdfcairo
	Pict2e
	Pm
	Png
	Examples

	Pngcairo
	Postscript
	Editing postscript
	Postscript fontfile
	Postscript prologue
	Postscript adobeglyphnames

	Pslatex and pstex
	Pstricks
	Qt
	Regis
	Sixelgd
	Svg
	Svga
	Tek40
	Tek410x
	Texdraw
	Tgif
	Tikz
	Tkcanvas
	Webp
	Windows
	Graph-menu
	Printing
	Text-menu
	Wgnuplot.mnu
	Wgnuplot.ini

	Wxt
	X11
	X11_fonts
	Command-line_options
	Color_resources
	Grayscale_resources
	Line_resources
	X11 pm3d_resources
	X11 other_resources

	Xlib

	V Index

